| 研究生: |
陳琨曜 Chen, Kun-Yao |
|---|---|
| 論文名稱: |
薄膜應力與基板彎曲問題之研究 The deformation of Thin Film-Substrate System |
| 指導教授: |
陳東陽
Chen, Tung-yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 基板彎曲變形 、薄膜應力 |
| 外文關鍵詞: | thin film stress, substrate deformation |
| 相關次數: | 點閱:177 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜微結構在複雜沈積過程中,薄膜大多會與基板接觸表面產生殘留應力,應力過大時容易造成基板彎曲變形而導致薄膜破裂損壞,因此準確地評估薄膜殘留應力問題是非常重要的課題。本論文主要在平板力學理論架構下,分析薄膜應力造成基板彎曲變形的數學架構與力學行為,推算出兩者間之精確解,與Stoney formula比較,探討二者推導機制之差異,進一步分析Stoney formula之誤差原因。並且配合電腦軟體ABAQUS建立合理之模型來提供數值解,探討數學模式之正確性。
During the process of thin film deposition, residual stress will be induced in most of the situations when the thin film gets in touch with the substrate. Deformation of the substrate usually occurs when the stress attains the limitation at a certain value. Therefore, it is informative to characterize the stress evolution of the thin film in a reasonable manner. Based on the classical plate theory, a mathematical framework is constructed and the mechanical behavior is estimated when the thin film stress is caused by the deformation of the substrate. We have derived the exact solutions based on the framework and compared the results with the well-known Stoney formula. The discrepancy of the two results will be addressed. Furthermore, the underlying reasons for the inaccuracy will be assessed. A reasonable model is also constructed to provide numerical solutions in contrast with the finite element calculations, ABAQUS.
Abermann, R. and Koch, R., The internal stress in thin silver, copper and gold films, Thin Solid Films. 129, pp. 71-78, 1985.
Blech, I. A., Blech, I. and Finot, M., Determination of thin-film stresses on round substrates, J. Appl. Phys. 97, pp. 13525, 2005.
Cammarata, R. C., Surface and interface stress effects in thin films, Prog. Surf. Sci. 46, pp.1-38, 1994.
Cammarata, R. C., Trimble, T. M. and Srolovitz, D. J., Surface stress model for instrinsic stresses in thin films, J. Mater. Res. 15, pp.2468-2474, 2000.
Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. and Hearne, S. J., Origin of Compressive Residual Stress in Polycrystalline Thin Films, Phys. Rev. Lett. 88, pp. 156103, 2002.
Chen, K. S. and Ou, K. S., Modification of curvature-based thin-film residual stress measurement for MEMS application, J. Micromech. Microeng. 12, pp. 917-924, 2002.
Floro, J. A., Hearne, S. J., Hunter, J. A., Kotula, P., Chason, E., Seel, S.C. and Thompson, C. V., The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films, J. Appl. Phys. 89, pp. 4886-4897, 2001.
Floro, J. A., Chason, E., Cammarata, R. C., Srolovitz, D. J., Physical origins of intrinsic stresses in Volmer-Weber thin films, MRS Bull. 27, pp. 19-25, 2002.
Freund, L. B. and Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, Cambridge, UK, 2003.
Frank, F. C. and Van Der Merwe, J. H., One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth, Proc. R. Soc. London. A198, pp. 216-225, 1949.
Freund, L. B., Floro, J. A. and Chason, E., Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations, Appl. Phys. Lett. 74, pp. 1987-1989, 1999.
Guduru, P. R., Chason, E. and Freund, L. B., Mechanics of compressive stress evolution during thin film growth, J. Mech. Phys. Solids. 51, pp. 2127-2148, 2003.
Hoffman, R. W., Stresses in thin films:the relevance of grain boundaries and impurities, Thin Solid Films. 34, pp. 185-190, 1976.
Hoffman, R.W., Stress distributions and thin film mechanical properties, Surf. Interface Anal. 34, pp. 62-66, 1981.
Hu, Y. Y. and Huang, W. M., Elastic and elastic-plastic analysis of multilayler thin films, J. Appl. Phys. 96, pp. 4154-4160, 2004.
Klein, C. A., How accurate are Stoney's equation and recent modifications, J. Appl. Phys. 88, pp. 5487-5489, 2000.
Nix, W. D. and Doerner, M. F., Stresses and deformation processes in thin films on substrates, Crit. Rev. Solid State Mater. Sci. 14, pp. 225-268, 1988.
Nix, W. D., Mechanical properties of thin films, Metall. Trans. 20A, pp. 2217, 1989.
Nix, W. D. and Clement, B. M., Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films, J. Mater. Res. 14, pp. 3467-3473, 1999.
Stoney, G. G., The tension of metallic films deposited by electrolysis, Proc. R. Soc. London. Ser. A82, No.533, pp. 172-175, 1909.
Stranski, I. N. and Kratanov, L., Zur theorie der orientierten. Ausscheidung von ionenkristallen aufeinander, Ber. Akad. Wiss. Wien. 146, pp. 797-810, 1938.
Timoshenko, S., Theory of Plates and Shells, (New York;McGraw-Hill Book Company, Inc., London, 1940).
Ugural, A. C., Stresses in Plates and Shells, Second Edition, (New York, McGraw-Hill, 1999).
Volmer, M. and Weber, A., Nuclei formation in supersaturated states, Z. Phys. Chem. 119, pp.277-301, 1926.
Zhang, Y. and Zhao, Y. P., Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer, J. Appl. Phys. 99, pp. 053513, 2006.
Zhu, M. and Kirby, P. B., Governing equation for the measurement of nonuniform stress distributions in thin films using a substrate deformation technique, Appl. Phys. Lett. 88, pp. 171903, 2006.
田春林, 光學薄膜應力與熱膨脹係數量測之研究, 國立中央大學光電科學研究所博士論文, 2000.
周政翰, 薄膜應力之有限元素分析與評估, 國立成功大學土木工程研究所碩士論文, 2006.
曾鴻翰, 半導體薄膜製程之殘留應力研究, 國立成功大學工程科學系碩士論文, 2004.