簡易檢索 / 詳目顯示

研究生: 黃朝均
Huang, Chao-Jyun
論文名稱: 整合型微流體系統應用於適合體之快速篩選
Integrated Microfluidic Systems for Rapid Screening of Aptamers
指導教授: 李國賓
Lee, Gwo-Bin
共同指導教授: 謝淑珠
Shiesh, Shu-Chu
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 124
中文關鍵詞: 甲型胎兒蛋白適合體競爭型分析C-反應蛋白系統性配分子指數增益演繹程序微機電系統微流體
外文關鍵詞: AFP, aptamers, competitive assay, CRP, SELEX, MEMS, microfluidics
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系統性配分子指數增益演繹程序(systematic evolution of ligands by exponential enrichment, SELEX)是一種體外篩選技術,透過該技術能在任意序列核酸分子庫中,經由反覆結合、分離和進行聚合酶連鎖反應(Polymerase chain reaction, PCR)放大的方式,篩選出一段與標的分子具高特異性和高親和力之單股去氧核糖核酸(single stranded deoxyribonucleic acid, ssDNA)或核糖核酸(ribonucleic acid, RNA)片段,稱之為適合體(aptamer)。此類適合體利用其本身特殊三維結構,可應用於多種用途上,包括感測及診斷分析,甚至可作為新藥物設計等。然而,反覆結合、分離和放大的程序,費時費力,且需使用到數種大型儀器,更容易因人為操作產生誤差和汙染。近年,隨著微機電系統(micro-electro-mechanical-system, MEMS)製程和微流體(microfluidic)技術之成熟,藉由微機電各種創新之製程技術,可將數種大型生化分析儀器縮小並整合至一微小的微流體晶片中,以減少生物試劑耗量及成本,且具有高檢測效能、可拋棄式、可攜帶性等優點,因此在生物醫學中扮演了十分重要的角色。
    本研究利用微機電製程和微流體技術之整合,提出兩個自動化SELEX晶片系統。此微型化晶片系統主要由兩大模組組成,分別為用於流體傳輸以及混合之微流體操控模組和一個用於產生溫度場以進行聚合酶連鎖反應之微型溫度控制模組。首先,利用和蛋白質具有高專一性鍵結之微型磁珠(magnetic microbeads)修飾上待測蛋白質,接著利用微流體操控模組,將磁珠和任意序列單股去氧核糖核酸均勻混合(incubation),藉由流體造成之擾流,與標的蛋白質具有親合力之單股去氧核糖核酸能固定在磁珠表面,接著利用外加磁場將磁珠在樣品中進行分離及濃縮,藉由此步驟,檢體將被淨化且集中,最後再透過晶片上高升降溫速率之微型溫度控制模組,控制反應槽內溫度高低循環進行聚合酶連鎖反應,將磁珠上的單股去氧核糖核酸複製放大,如此便完成一次SELEX程序。利用此晶片系統,經由反覆的SELEX程序(5~6次),可以快速在任意序列核酸分子庫中篩選出與C-反應蛋白(C-reactive protein, CRP)和甲型胎兒蛋白(alpha-fetoprotein, AFP)具高專一性和親合力之適合體,相較於傳統篩選方法,可以節省一半以上的檢測時間和試劑消耗。
    即使經由SELEX程序篩選,仍只有部份的核酸最終被確認和標的分子具有足夠的親和力及專一性,因此,SELEX程序篩選過後的核酸還需利用競爭型測試(competitive assay)做進一步的確認,以節省之後定序、合成及親和力量測等費用。然而,傳統競爭試測除了要需要花費許多時間與人力外,繁覆的清洗步驟經常會有與待測物不具親和力之核酸殘留在試管之中造成汙染,不利最後的判斷;針對於這個問題,本研究提出競爭測試晶片,利用自動化的清洗裝置和流線型的管道設計避免殘留問題,達到精確篩選與標的分子具高親和力及高專一性的適合體。根據競爭試測實驗結果,C-反應蛋白和甲型胎兒蛋白適合體利用表面電漿共振(surface plasmon resonance, SPR)所測得之解離速率常數(dissociation constant)分別為3.51 nM 和 2.37 nM,與傳統抗體相較,適合體比抗體具有更高的親合力。
    最後將所挑選出的C-反應蛋白和甲型胎兒蛋白之適合體實際應用於臨床檢測,由實驗結果可知,C-反應蛋白和甲型胎兒蛋白之適合體檢測極限約在0.0125 mg/L 和12.5 ng/mL,而C-反應蛋白在濃度為0.0125 mg/L到10 mg/L之間時,線性度0.9694 (R2 = 0.9694),甲型胎兒蛋白在濃度為12.5 ng/mL到800 ng/mL之間時,線性度0.9747 (R2 = 0.9747),皆符合臨床檢測上的應用,相信於不久的將來,本晶片系統所提供之自動化快速篩選平台,將對於利用適合體相關之分子生物研究有極大助益。

    The Systematic Evolution of Ligands by Exponential Enrichment (SELEX) is a screening technique that involves the progressive selection of highly specific ligands by repeated rounds of partition and amplification from a large combinatorial nucleic acid library. The products of this selection process are called target specific aptamers, which are short single stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid (RNA) molecules, binding with a high affinity, attributed to their specific three-dimensional shapes, to a large variety of targets, ranging from small molecules to complex mixtures. The aptamers with the highest affinity binding that are isolated through the SELEX process can have great potential as biochemical detectors diagnostic indicators and are considered as potent therapeutic lead structures to be evaluated in preclinical disease models. However, SELEX is an iterative process requiring multiple rounds of selection and amplification that demand significant time and labor. In addition, several large-scale pieces of equipment are usually needed to perform the SELEX protocol and the bio-samples may also be wasted or be a source of contamination during manual operations.
    Another issue involved in the aptamer screening process is that it still requires a lengthy process of competitive assay to verify the selectivity of aptamers, before the selected ssDNA can be subsequently sequenced and synthesized. This is because only a few of the selected ssDNA aptamers are useful for further testing. Therefore, a competitive assay which screens the selected ssDNAs after the SELEX process is in great need. However, the traditional method for performing a competitive assay still requires repeated, time-consuming selection rounds and delicate manual processes. For example, it has proven challenging to control in a reproducible manner the washing conditions to avoid dead volumes in test tubes, which has a direct impact on the resulting aptamers that are extracted.
    In order to address these problems, this study presents a magnetic bead-based microfluidic system which performs ssDNA incubation, extraction and nucleic acid amplification processes facilitating the entire SELEX process. More importantly, the selected ssDNA are further examined for their affinity and specificity to target molecules in a new competitive assay chip, which demonstrates exceptional separation efficiency in removing any weakly bound or unbound ssDNA to rapidly identify target-specific aptamers. With this approach, a C-reactive protein (CRP)-specific aptamer and an alpha-fetoprotein (AFP)-specific aptamer, which are biomarkers for cardiovascular diseases and liver cancers, respectively, have been successfully purified and enriched from a whole combinatorial ssDNA library. The resulting dissociation constant of the CRP-specific aptamer and the AFP-specific aptamer was 3.51 nM and 2.37 nM, respectively, which is comparable to the affinities for the CRP antibody and AFP antibody reported from different clones (10-7~10-9 M).
    When compared to the traditional equipment that is used for SELEX processing, the microfluidic system is more compact in size and consumes fewer samples and reagents. It only takes approximately 60 min for the microfluidic SELEX chip to perform a single round of the SELEX process, which is much faster than that of a traditional SELEX process (at least 150 min). Moreover, the total sample volume which is consumed in each operation is only 40 μL, which is significantly less than that required in a large system (100 μL). Furthermore, the selected ssDNA has been further examined for its affinity and the specificity with the target in a new competitive assay chip. This process is much faster than the traditional competitive assay method and can significantly reduce the cost for ssDNA sequencing, synthesis and SPR detection.
    In order to demonstrate the capabilities of the developed chips, the detection of CRP and AFP by using the SELEX selected CRP-specific aptamer and the AFP-specific aptamer have further been demonstrated. Experimental results show that the detection limit for CRP and AFP are 0.0125 mg/L and 12.5 ng/mL, respectively. Linear ranges (R2 = 0.9694 and R2 = 0.9747) have been obtained over concentrations ranging from 0.0125 mg/L to 10 mg/L and 12.5 ng/mL to 800 ng/mL, respectively, which makes it suitable for clinical applications. These developed microsystems are capable of faster screening of aptamers and can be used as a powerful tool to select analyte-specific aptamers for future biomedical applications.

    Table of Contents Abstract I 摘要 IV 致謝 VI Table of Contents VIII List of Tables XII List of Figures XIII Abbreviation XXIV Nomenclature XXVII Chapter 1 Introduction 1 1.1 MEMS and Microfluidic Technology 1 1.2 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 1 1.3 Aptamers in Biological Applications 2 1.4 Background and Literature Survey 3 1.4.1 Isolation of aptamer 3 1.4.2 Microfluidic Components – Micropumps and Micromixers 5 1.4.3 Aptamer Amplification by Using Polymerase Chain Reaction (PCR) 6 1.4.4 C-Reactive Protein (CRP) and Its Clinical Application 6 1.4.5 Alpha-Fetoprotein (AFP) and Its Clinical Application 7 1.5 Motivation and Objectives 8 Chapter 2 Methods, Theory and Design 17 2.1 Selection of High Affinity Aptamers using SELEX 17 2.2 Overview of the Aptamer Selection Process 18 2.3 Experimental Processes of the Magnetic Bead-based Microfluidic Systems 19 2.3.1 The SELEX protocol 19 2.3.2 The Competitive Assay Protocol 20 2.3.3 Procedure for Detection of the Target Protein 21 2.4 Design of the Magnetic Bead-Based Microfluidic Systems 23 2.4.1 Design of the SELEX Chips 24 2.4.2 Design of the Competitive Assay Chip 25 2.4.3 Design of the Protein Detection Chip 26 2.5 Working Principle of Microfluidic Systems 26 2.5.1 Microfluidic Control Module 26 2.5.1.1 Membrane Activation Theory 27 2.5.1.2 Working principle of Circular Micropump/Micromixer 27 2.5.1.3 Working principle of Suction-Type Micromixer 28 2.5.2 Nucleic Acid Amplification Module 29 2.5.2.1 Design of the Micro Temperature Control Module 30 2.6 Analysis of Polyacrylamide Gel Electrophoresis (PAGE) 31 Chapter 3 Materials and Fabrication 53 3.1 Preparation of the Target Protein-Conjugated Magnetic Beads 53 3.1.1 Preparation of the CRP-Conjugated Magnetic Beads 53 3.1.2 Preparation of the AFP-Conjugated Magnetic Beads 53 3.2 Preparation of the BSA-Conjugated Magnetic Beads 54 3.3 Preparation of the DNA aptamer- Conjugated Magnetic Beads 55 3.3.1 Preparation of the CRP-Specific aptamer-Conjugated Magnetic Beads 55 3.3.2 Preparation of the AFP-Specific aptamer-Conjugated Magnetic Beads 55 3.4 Polymerase Chain Reaction Process 56 3.5 Procedure of TA-cloning 57 3.6 Fabrication of the Microfluidic Systems 58 3.6.1 Overview of the Microfabrication Techniques 58 3.6.2 Fabrication of the Micro Temperature Control Module 59 3.6.3 Formation of the Microfluidic Control Module 61 3.6.3.1 PDMS Casting 62 3.7 Experimental Setup 63 3.7.1 Experimental Setup for SELEX 63 3.7.2 Experimental Setup for Competitive Assay 64 3.7.3 Experimental Setup for Protein Detection 64 3.7.4 Custom-made optical and control systems 65 Chapter 4 Results and Discussion 75 4.1 Characterization of the Microfluidic Control Module 75 4.1.1 Characterization of the Pneumatic Micropump 75 4.1.2 Characterization of the Pneumatic Micromixer 76 4.1.3 Characterization of the Suction-Type Micromixer 78 4.2 Characterization of the Micro temperature Control Module 79 4.2.1 Temperature Uniformity of the Block-Type Microheater 79 4.2.2 Temperature Uniformity of Array-Type Microheater 80 4.3 Screening of CRP-Specific Aptamers 80 4.3.1 TA Cloning of the CRP-Specific DNA 81 4.3.2 Competitive Assays of the CRP-Specific Aptamers Utilizing a Tradition Method 81 4.3.3 The Dissociation Constant of the CRP-Specific Aptamer 83 4.3.3.1 Detection Chip Modifications 83 4.3.3.2 Measurement of CRP-specific aptamer dissociation constant 83 4.4 Screening of AFP-Specific Aptamers 84 4.4.1 TA cloning of the AFP-Specific DNA 84 4.4.2 Competitive Assays of the AFP-Specific Aptamers 84 4.4.3 The Dissociation Constant of the AFP-Specific Aptamer 85 4.4.3.1 Detection Chip Modifications 85 4.4.3.2 Measurement of AF-specific aptamer dissociation constant 85 4.5 Application of the CRP-Specific Aptamer in a Clinical Samples 86 4.6 Application of the AFP-Specific Aptamer in a Clinical Samples 87 4.7 Comparison of the Prototype Microfluidic Systems with the Traditional Method 88 Chapter 5 Conclusions and Future Works 103 5.1 Review of the Dissertation 103 5.2 Future Works 104 References 106 Curriculum Vitae 120 Publication List 121

    References
    [1] N. Maluf, “An introduction to microelectromechanical systems engineering”, Artech House, Boston, 1, 2000.
    [2] D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annual Review of Biomedical Engineering, vol. 4, pp. 246–286, 2002.
    [3] F. E. H. Tay, “Microfluidics and Bio-MEMS applications,” Kluwer Academic Publishers, 2002.
    [4] D. R. Reyes, D. Lossifidis, P. A. Auroux and A. Manz, “Micro total analysis system Ι: Introduction, theory and technology,” Analytical Chemistry, vol. 74, pp. 2623–2636, 2002.
    [5] P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, “Micro total analysis systems II: Analytical standard operations and applications,” Analytical Chemistry, vol. 74, pp. 2637–2652, 2002.
    [6] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, pp. 244–248, 1990.
    [7] L. Gervais and E. Delamarche, “Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates,” Lab on a Chip, vol. 9, pp. 3330–3337, 2009.
    [8] A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, pp. 818–822, 1990.
    [9] C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, pp. 505–510, 1990.
    [10] M. Famulok and J. W. Szostak, “In vitro selection of specific ligand binding nucleic acids,” Angewandte Chemie International Edition (English), vol. 31, pp. 979–988, 1992.
    [11] D. Mann, C. Reinemann, R. Stoltenburg and B. Strehlitz, “In vitro selection of DNA aptamers binding ethanolamine,” Biochemical and Biophysical Research Communications, vol. 338, pp. 1928–1934, 2005.
    [12] P. L. Sazani, R. Larralde and J. W. Szostak, “A small aptamer with strong and specific recognition of the triphosphate of ATP,” Journal of the American Chemical Society, vol. 126, pp. 8370–8371, 2004.
    [13] S. Sekiya, K. Noda, F. Nishikawa, T. Yokoyama, P. K. R. Kumar and S. Nishikawa, “Characterization and Application of a Novel RNA Aptamer against the Mouse Prion Protein,” journal of biochemistry, vol. 139, pp. 383–390, 2006.
    [14] J. H. Lee, M. D. Canny, A. D. Erkenez, D. Krilleke, Y. S. Ng, D. T. Shima, A. Pardi and F. Jucker, “A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 18902–18907, 2005.
    [15] B. J. Hicke, C. Marion, Y. F. Chang, T. Gould, C. K. Lynott, D. Parma, P. G. Schmidt and S. Warren, “Tenascin-C aptamers are generated using tumor cells and purified protein,” Journal of Biological Chemistry, vol. 276, pp. 48644–48654, 2001.
    [16] D. Shangguan, Y. Li, Z. Tang, Z. C. Cao, H. W. Chen, P. Mallikaratchy, K. Sefah, C. J. Yang, and W. Tan, “Aptamers evolved from live cells as effective molecular probes for cancer study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 11838–11843, 2006.
    [17] K. T. Guo, A. Paul, C. Schichor, G. Ziemer and H. P. Wendel, “CELL-SELEX: Novel perspectives of aptamer-based therapeutics,” International Journal of Molecular Sciences, vol. 9, pp. 668–678, 2008.
    [18] J. A. Phillips, D. Lopez-Colon, Z. Zhu, Y. Xu and W. Tan, “Applications of aptamers in cancer cell biology,” Analytica Chimica Acta, vol. 621, pp. 101–108, 2008.
    [19] K. Sefah, D. Shangguan, X. Xiong, M. B. O’Donoghue and W. Tan, “Development of DNA aptamers using Cell-SELEX,” Nature Protocols, vol. 5, pp. 1169–1185, 2010.
    [20] D. Shangguan, Z. Cao, L. Meng, P. Mallikaratchy, K. Sefah, H. Wang, Y. Li and W. Tan, “Cell-specific Aptamer Probes for Membrane Protein Elucidation in Cancer Cells,” Journal of Proteome Research, vol. 7, pp. 2133–2139, 2008.
    [21] D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek and L. Gold, “A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 15416–15421, 2003.
    [22] S. C. B. Gopinath, T. S. Misono, K. Kawasaki, T. Mizuno, M. Imai, T. Odagiri and P. K. R. Kumar, “An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion,” Journal of General Virology, vol. 87, pp. 479–487, 2006.
    [23] J. Kawakami, H. Imanaka, Y. Yokota and N. Sugimoto, “In vitro selection of aptamers that act with Zn2+,” Journal of Inorganic Biochemistry, vol. 82, pp. 197–206, 2000.
    [24] C. Wilson and J. W. Szostak, “Isolation of a fluorophore-specific DNA aptamer with weak redox activity,” Chemistry & Biology, vol. 5, pp. 609–617, 1998.
    [25] Y. Yang, D. Yang, H. J. Schluesener and Z. Zhang, “Advances in SELEX and application of aptamers in the central nervous system,” Biomolecular Engineering, vol. 24, pp. 583–592, 2007.
    [26] S. D. Jayasena, “Aptamers: An emerging class of molecules that rival antibodies in diagnostics,” Clinical Chemistry, vol. 45, pp. 1628–1650, 1999.
    [27] D. H. J. Bunka and P. G. Stockley, “Aptamers come of age-at last,” Nature Reviews Microbiology, vol. 4, pp. 588–596, 2006.
    [28] M. T. Bowser, “SELEX: Just another separation?” Analyst, vol. 130, pp. 128–130, 2005.
    [29] M. Blank, T. Weinschenk, M. Priemer and H. Schluesener, “Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels,” The Journal of Biological Chemistry, vol. 276, pp. 16464–16468, 2001.
    [30] X. Yang, X. Li, T. W. Prow, L. M. Reece, S. E. Bassett, B. A. Luxon, N. K. Herzog, J. Aronson, R. E. Shope, J. F. Leary and D. G. Gorenstein, “Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers,” Nucleic Acids Research, vol. 31, pp. e54, 2003.
    [31] T. S. Misono and P. K. R. Kumar, “Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance,” Analytical Biochemistry, vol. 342, pp. 312–317, 2005.
    [32] S. D. Mendonsa and M. T. Bowser, “In vitro evolution of functional DNA using capillary electrophoresis,” Journal of the American Chemical Society, vol. 126, pp. 20–21, 2004.
    [33] R. K. Mosing, S. D. Mendonsa and M. T. Bowser, “Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase,” Analytical Chemistry, vol. 77, pp. 6107–6112, 2005.
    [34] M. Berezovski, A. Drabovich, S. M. Krylova, M. Musheev, V. Okhonin, A. Petrov and S. N. Krylov, “Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers,” Journal of the American Chemical Society, vol. 127, pp. 3165–3171, 2005.
    [35] A. Drabovich, M. Berezovski and S. N. Krylov, “Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). Journal of the American Chemical Society, vol. 127, pp. 11224–11225, 2005.
    [36] J. Qian, X. Lou, Y. Zhang, Y. Xiao and H. T. Soh, “Generation of highly specific aptamers via micromagnetic selection,” Analytical Chemistry, vol. 81, pp. 5490–5495, 2009.
    [37] M. Berezovski, M. Musheev, A. Drabovich and S. N. Krylov, “Non-SELEX selection of aptamers,” Journal of the American Chemical Society, vol. 128, pp. 1410–1411, 2006.
    [38] J. G. Bruno and J. L. Kiel, “Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods,” BioTechniques, vol. 32, pp. 178–180, 2002.
    [39] M. B. Murphy, S. T. Fuller, P. M. Richardson and S. A. Doyle, “An improved method for the in vitro evolution of aptamers and applications in protein detection and purification,” Nucleic Acids Research, vol. 31, pp. 3185–3193, 2003.
    [40] X. Lou, J. Qian, Y. Xiao, L. Viel, A. E. Gerdon, E. T. Lagally, P. Atzberger, T. M. Tarasow, A. J. Heeger and H. T. Soh, “Micromagnetic selection of aptamers in microfluidic channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 2989–2944, 2009.
    [41] N. T. Nguyen and T. Q. Truong, “A fully polymeric micropump with piezoelectric actuator,” Sensors and Actuators B: Chemical, vol. 97, pp. 137–143, 2004.
    [42] M. Koch, N. Harris, A. Evans, N. White and A. Brunnschweiler, “A novel micromachined pump based on thick-film piezoelectric actuation,” Sensors and Actuators A: Physical, vol. 70, pp. 98–103, 1998.
    [43] F. C. M. Van de Pol, H. T. G. Van Lintel, M. Elwenspoek and J. H. J. Fluitman, “A thermopneumatic micropump based on microengineering techniques,” Sensors and Actuators A: Physical, vol. 21, pp. 198–202, 1990.
    [44] O. C. Jeong and S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm,” Sensors and Actuators A: Physical, vol. 83, pp. 249-255, 2000.
    [45] T. Y. Ng, T. Y. Jiang, H. Li, K. Y. Lam and J. N. Reddy, “A coupled field study on the non-linear dynamic characteristics of electrostatic micropump,” Journal of Sound and Vibration, vol. 273, pp. 989–1006, 2004.
    [46] T. Bourouina, A. Bosseboeuf and J. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications,” Journal of Micromechanics and Microengineering, vol. 7, pp. 186–188, 1997.
    [47] S. Santra, P. Hollawaya and C. D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors and Actuators A: Physical, vol. 87, pp. 358–364, 2002.
    [48] M. Koch, H. Witt, A. G. R. Evans, A. Brunnschweiler, “Improved characterization technique for micromixers,” Journal of Micromechanics and Microengineering, vol. 9, pp. 156–158, 1999.
    [49] M. S. Munson and P. Yager, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Analytica Chimica Acta, vol. 507, pp. 63–71, 2004.
    [50] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” Journal of microelectromechanical systems, vol. 9, pp. 190–197, 2000.
    [51] A. D. Stroock, S. K. W. Dertinger, A. Ajdari and G. M. Whitesides, “Patterning flows using grooved surfaces,” Analytical Chemistry, vol. 74, pp. 5306–5312, 2002.
    [52] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, vol. 295, pp. 647–651, 2002.
    [53] W. G. Lee, Y. G. Kim, B. G. Chung, U. Demirci and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Advanced Drug Delivery Reviews, vol. 62, pp. 449–457, 2010.
    [54] C. H. Wang, and G. B. Lee, “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, vol. 16, pp. 341–348, 2006
    [55] K. B. Mullis, F. Ferre and R. A. Gibbs, “The polymerase chain reaction,” Birkhauser, Boston, USA, 1994.
    [56] J. M. S. Bartlett and D. Stirling, “A Short History of the Polymerase Chain Reaction,” Methods in Molecular Biology, vol. 226, pp. 3–6, 2003.
    [57] R. K. Saiki, S. Scharf, F. Falloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim, “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,” Science, vol. 230, pp. 1350–1354, 1985.
    [58] P. A. Auroux, Y. Koc, A. deMello, A. Manz and P. J. R. Day, “Miniaturized nucleic acid analysis,” Lab on a Chip, vol. 4, pp. 534–546, 2004.
    [59] M. A. Northrup, M. T. Ching, R. M. White and R. T. Wltson, “DNA amplification with microfabricated reaction chamber,” Transducers, pp. 924–926, 1993.
    [60] M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, P. Landre, S. Lehew, R. Saiki, J. J. Shinsky and R. Jr. Watson, “A MEMS-based miniature DNA analysis system,” Transducers, pp. 764–767, 1995.
    [61] J. H. Daniel, S. Iqbal, R. B. Millington, D. F. Moore, C. R. Lowe, D. L. Leslie, M. A. Lee and M. J. Pearce, “Silicon Microchamber for DNA Amplification,” Sensors and Actuators A, vol. 71, pp. 81–88, 1998.
    [62] Adam T. Woolley, Dean Hadley, Phoebe Landre, Andrew J. deMello, Richard A. Mathies and M. Allen Northrup, “Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device,” Analytical Chemistry, vol. 68, pp. 4081–4086, 1996.
    [63] E. T. Lagally, P. C. Simpson and R. A. Mathies, “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system,” Sensors and Actuators B: Chemical, vol. 63, pp. 138–146, 2000.
    [64] E. T. Lagally, C. A. Emrich and R. A. Mathies, “Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis,” Lab on a Chip, vol. 1, pp. 102–107, 2001.
    [65] C. J. Huang, H. I. Lin, S. C. Shiesh and G. B. Lee, “Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX),” Biosensors and Bioelectronics, vol. 25, pp. 1761–1766, 2010.
    [66] J. E. Volanakis, “Human C-reactive protein: expression, structure, and function,” Molecular Immunology, vol. 38, pp. 189–197, 2001.
    [67] M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” The Journal of Clinical Investigation, vol. 111, pp. 1805–1812, 2003.
    [68] D. Thompson, M. B. Pepys and S. P. Wood, “The physiological structure of human C-reactive protein and its complex with phosphocholine,” Structure, vol. 7, pp. 169–177, 1999.
    [69] B. Shine, F. C. de Beer and M. B. Pepys, “Solid phase radio immunoassays for human C-reactive protein,” Clinica Chimica Acta, vol. 117, pp. 13–23, 1981.
    [70] T. A. Pearson, G. A. Mensah, R. W. Alexander, J. L. Anderson, R. O. Cannon, M. Criqui, Y. Y. Fadl, S. P. Fortmann, Y. Hong, G. L. Myers, N. Rifai, S. C. Smith, K. Taubert, R. P. Tracy and F. Vinicor, “AHA/CDC Scientific Statement : Markers of Inflammation and Cardiovascular Disease- Application to Clinical and Public Health Practice A Statement for Healthcare Professionals From the Centers for Disease Control and Prevention and the American Heart Association,” Circulation, vol. 107, pp. 499–511, 2003.
    [71] G. L. Myers, N. Rifai, R. P. Tracy, W. L. Roberts, R. W. Alexander, L. M. Biasucci, J. D. Catravas, T. G. Cole, G. R. Cooper, B. V. Khan, M. M. Kimberly, E. A. Stein, K. A. Taubert, G. R. Warnick and P. P. Waymack, “CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: Report From the Laboratory Science Discussion Group,” Circulation, vol. 110, pp. e545–e549, 2004.
    [72] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, “An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab on a Chip, vol. 2, pp. 27–30, 2002.
    [73] G. J. Mizejewski, “Mechanism of Cancer Growth Suppression of Alpha-Fetoprotein Derived Growth Inhibitory Peptides (GIP): Comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects,” Cancers, vol. 3, pp. 2709–2733, 2011.
    [74] E. Ruoslahti, H. Pihko and M. Seppala, “Alpha-fetoprotein: Immunochemical purification and chemical properties. Expression in normal state and in malignant and nonmalignant liver diseases,” Immunological Reviews, vol. 20, pp. 38–60, 1974.
    [75] G. J. Mizejewski, “Alpha-fetoprotein Structure and Function: Relevance to Isoforms, Epitopes, and Conformational Variants,” Experimental Biology and Medicine, vol. 226, pp. 377–408, 2001.
    [76] D. Gitlin, “Normal biology of α-fetoprotein,” Annals of the New York Academy of Sciences, vol. 259, pp. 7–16, 1975.
    [77] S. F. Chou, W. L. Hsu, J, M. Hwang, and C. Y. Chen, “Determination of α-Fetoprotein in Human Serum by a Quartz Crystal Microbalance-based Immunosensor,” Clinical Chemistry, vol. 48, pp. 913–918, 2002.
    [78] D. Ball, E. Rose and E. Alpert, “Alpha-fetoprotein levels in normal adults,” The American Journal of Medical Sciences, vol. 303, pp. 157–159, 1992.
    [79] J. G. Bruno and J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosensors and Bioelectronics, vol. 14, pp. 457–464, 1999.
    [80] L. B. McGown, M. J. Joseph, J. B. Pitner, G. P. Vonk and C. P. Linn, “The Nucleic Acid Ligand-A New Tool for Molecular Recognition,” Analytical Chemistry, vol. 67, pp. 663–668, 1995.
    [81] T. Vilkner, D. Janasek and A. Manz, “Micro total analysis systems: recent developments,” Analytical Chemistry, vol. 76, pp. 3373–3385, 2004.
    [82] P. Grodzinski, R. Liu, J. Yang and M. D. Ward, “Microfluidic system integration in sample preparation chip-sets-a summary,” Proceeding of the 26th Annual International Conference of the IEEE EMBS, pp. 2615-2618, 2004.
    [83] J. A. Lee, S. Hwang, J. Kwak, S. I. Park, S. S. Lee and K. C. Lee, “An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection,” Sensors and Actuators B: Chemical, vol. 129, pp. 372–379, 2008.
    [84] A. Wochner, M. Menger, D. Orgel, B. Cech, M. Rimmele, V. A. Erdmann, J. Glokler, “A DNA aptamer with high affinity and specificity for therapeutic anthracyclines,” Analytical Biochemistry, vol. 373, pp. 34–42, 2008.
    [85] G. Hybarger, J. Bynum, R. F. Williams, J. J. Valdes, and J. P. Chambers, “A microfluidic SELEX prototype, Analytical and Bioanalytical Chemistry, vol. 384, pp. 191–198, 2006.
    [86] Y. Ito, S. Fujita, N. Kawazoe and Yukio Imanishi, “Competitive Binding Assay for Thyroxine Using in Vitro Selected Oligonucleotides,” Analytic Chemistry, vol. 70, pp. 3510–3512, 1998.
    [87] C. C. Huang, S. H. Chiu, Y. F. Huang, and H. T. Chang, “Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor,” Analytic Chemistry, vol. 79, pp. 4798–4804. , 2007
    [88] S. Jones, D. T. Daley, N. M. Luscombe, H. M. Berman and J. M. Thornton, “Protein–RNA interactions: a structural analysis,” Nucleic Acids Research, vol. 29, pp. 943–954, 2001.
    [89] U. Gerland, J. D. Moroz and T. Hwa, “Physical constraints and functional characteristics of transcription factor–DNA interaction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 12015–12020, 2002.
    [90] J. Magee and J. Warwicker, “Simulation of non-specific protein–mRNA interactions,” Nucleic Acids Research, vol. 33, pp. 6694–6699, 2005.
    [91] B. Vant-Hull, A. Payano-Baez, R. H. Davis, L. Gold, “The mathematics of SELEX against complex targets,” Journal of Molecular Biology, vol. 278, pp. 579–597, 1998.
    [92] G. D. Stormo, D. S. Fields, “Specificity, free energy and information content in protein–DNA interactions,” Trends in Biochemical Sciences, vol. 23, pp. 109–113, 1998.
    [93] M. Djordjevic, “SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways,” Biomolecular Engineering, vol. 24, pp. 179–189, 2007.
    [94] D. Schneider, L. Gold, T. Platt, “Selective enrichment of RNA species for tight binding to Escherichia coli rho factor,” The FASEB Journal, vol. 7, pp. 201–207, 1993.
    [95] I. V. Andrianov, and J. Awrejcewicz, “Theory of plates and shells: new trends and applications,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 5, pp. 23–36, 2004.
    [96] A. D. Kerr, and H. Alexander, “An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate,” Acta Mechanica, vol. 6, pp. 180–196, 1986.
    [97] Y. N. Yang, S. K. Hsiung, G. B. Lee, “A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure,” Microfluidics and Nanofluidics, vol. 6, pp. 823–833, 2009.
    [98] J. H. Wang, “A Miniature Polymerase Chain Reaction System for DNA Detection and Quantification,” Dissertation for Doctor of Philosophy, Department of Engineering Science National Cheng Kung University, 2008.
    [99] J. Liu, M. Enzelberger, and S. Quake, “A nanoliter rotary device for polymerase chain reaction,” Electrophoresis, vol. 23, pp. 1531–1536, 2002.
    [100] C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh, F. C. Huang, and C. H. Luo, “Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases,” Biosensors and Bioelectronics, vol. 20, pp. 1341–1348, 2005.
    [101] T. M. Hsieh, C. H. Luo, J. H. Wang, J. L. Lin, K. Y. Lien and G. B. Lee, “A two-dimensional, self-compensated, microthermal cycler for one-step reverse transcription polymerase chain reaction applications,” Microfluidics and Nanofluidics, vol. 6, pp. 797–809, 2009.
    [102] T. A. Holton and M. W. Graham, “A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors,” Nucleic Acids Research, vol. 19, pp. 1156, 1991.
    [103] I. W. Rangelow, F. Shi, P. Hudek, I. Kostic, E. Hammel, H. Loschner, G. Stengl and E. Cekan, “Silicon Stencil Masks for Masked Ion Beam Lithography Proximity Printing,” Microelectronic Engineering, vol. 30, pp. 257–260, 1996.
    [104] C. Ngô, C. Rosilio, “Lithography for semiconductor technology,” Nuclear Instruments and Methods in Physics Research B, vol. 131, pp. 22–29, 1997.
    [105] T. M. Hsieh, C. H. Luo, F. C. Huang, J. H. Wang, L. J. Chien, G. B. Lee, “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction,” Sensors and Actuators B: Chemical, vol. 130, pp. 848–856, 2008.
    [106] S. Y. Yang, J. L. Lin and G. B. Lee, “A vortex-type micromixer utilizing pneumatically driven membranes,” Journal of Micromechanics and Microengineering, vol. 19, pp. 035020, 2009.
    [107] W. B. Lee, Y. H. Chen, H. I. Lin, S. C. Shiesh and G. B. Lee, “An integrated microfluidic system for fast, automatic detection of C-reactive protein,” Sensors and Actuators B: Chemical, SNB-13103, 2011.
    [108] H. Y. Tseng, C. H. Wang, W. Y. Lin and G. B. Lee, “Membrane-activated microfluidic rotary devices for pumping and mixing,” Biomedical Microdevices, vol. 9, pp. 545–554, 2007.
    [109] Y. C. Chung, Y. L. Hsu, C. P. Jen, M. C. Lu and Y. C. Lin, “Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber,” Lab on a Chip, vol. 4, pp. 70–77, 2004.
    [110] C. H. Lin, C. H. Tsai and L. M. Fu, “A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions,” Journal of Micromechanics and Microengineering, vol. 15, pp. 935–943, 2005.
    [111] M. Malmqvist and R. Karlsson, “Biomolecular interaction analysis: affinity biosensor technologies for functional analysis of proteins,” Current Opinion in Chemical Biology, Vol. 1, pp. 378–383, 1997.
    [112] S. Lin, C. K. Lee, Y. H. Lin, S. Y. Lee, B. C. Sheu, J. C. Tsai and S. M. Hsu, “Homopolyvalent antibody–antigen interaction kinetic studies with use of a dual-polarization interferometric biosensor,” Biosensors and Bioelectronics, vol. 22, pp. 715–721, 2006.
    [113] K. Daigo, S. Sugita, Y. Mochizuki, H. Iwanari, K. Hiraishi, K. Miyano, T. Kodama and T. Hamakubo, “A simple hybridoma screening method for high-affinity monoclonal antibodies using the signal ratio obtained from time-resolved fluorescence assay,” Analytical Biochemistry, vol. 351, pp. 219–228, 2006.

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE