簡易檢索 / 詳目顯示

研究生: 蔡馥如
Tsai, Fu-Ju
論文名稱: 二氧化碳在缺氧腫瘤細胞的影響
Evaluation of CO2 delivery to hypoxia cells
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: 普魯士藍光熱效果腫瘤缺氧區域
外文關鍵詞: Prussian blue, photothermal effect, hypoxia
相關次數: 點閱:57下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 普魯士藍奈米粒子具有良好的生物相容性以及光熱轉換效率,近年來在生醫材料方面發表了許多關於腫瘤治療及診斷的文獻,但卻鮮少人針對減少腫瘤缺氧區域做相關的研究。我們利用普魯士藍提供光熱效果,並藉由表面修飾上碳酸氫根可釋放二氧化碳之性質,做減少腫瘤缺氧區域之研究。
    首先合成普魯士藍奈米粒子,並利用其表面三價鐵離子和碳酸氫根配位,使碳酸氫根修飾於普魯士藍表面,最後修飾上聚乙二醇以增加生物相容性以及材料分散性。接著利用普魯士藍提供光熱效果,使碳酸氫根斷鍵並釋放出二氧化碳,二氧化碳可使腫瘤微環境氧氣含量下降,使腫瘤細胞增加表現HIF-1α,進而造成血管新生,以傳遞更多氧氣至腫瘤缺氧區域,可減少腫瘤缺氧區域。

    In this study, we provide a strategy of the metal ion-ligand coordination feature for the Prussian blue nanoparticles showing the capability of CO2 release to reduce hypoxia. we synthesis of Prussian blue nanoparticle and modify the bicarbonate on the Prussian blue surface. Last, we modify the PEG on the Prussian blue surface. The Prussian blue revealing NIR light-induced hyperthermia resulted in the decomposition of bicarbonate into CO2. The CO2 development increased HIF-1a and new blood vessels to reduced hypoxia.

    摘要 ii 英文延伸摘要(Extended Abstract) iii 誌謝 x 目錄 xi 第一章、 緒論 1 1-1有機金屬骨架 ( Metal – Organic Frameworks,MOFs) 1 1-2普魯士藍之介紹 1 1-2-1普魯士藍之相關應用 3 1-3腫瘤缺氧區域之介紹 6 1-3-1減少缺氧區域之方法 8 1-4二氧化碳治療 10 1-4-1波爾效應 10 1-4-2二氧化碳之治療方法 11 第二章、實驗藥品與儀器 14 2-1合成PB-BC-PEG奈米粒子之化學藥品 14 2-2細胞實驗所需藥品 15 2-3細胞實驗使用之細胞株與抗體 16 2-4實驗儀器 17 第三章、 實驗動機與實驗步驟 19 3-1研究動機 19 3-2實驗步驟 21 3-2-1中孔洞普魯士藍奈米粒子(PB)之製備 21 3-2-2表面修飾碳酸氫根離子之普魯士藍奈米粒子(PB-BC)之製備 21 3-2-3表面修飾聚乙二醇之普魯士藍奈米粒子(PB-BC-PEG)之製備 21 3-2-4普魯士藍奈米粒子照射808nm 雷射升溫曲線之實驗步驟 22 3-2-5定量PB-BC釋放之二氧化碳 22 3-2-7 PB-BC-PEG材料穩定性測試 23 3-2-8細胞培養之實驗步驟 23 3-2-9細胞毒性測試 (MTT assay) 之實驗步驟 24 3-2-10 CO2對細胞影響之實驗 24 第四章、實驗結果與討論 26 4-1普魯士藍奈米粒子結構與性質之鑑定 26 4-2普魯士藍表面修飾碳酸氫根 29 4-3 PB-BC釋放CO2之測試 30 4-4普魯士藍表面修飾PEG 31 4-5普魯士藍吸收光譜 32 4-6普魯士藍升溫曲線 33 4-7細胞毒性測試 35 4-8穩定性測試 36 4-9 PB-BC-PEG釋放CO2對HIF-1α之影響 39 第五章、結論 41 參考文獻 42

    1. Zhu, Q.L. and Q. Xu, Metal-organic framework composites. Chem Soc Rev, 2014. 43(16): p. 5468-512.

    2. Zhao, D., et al., Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016. 18(21): p. 3746-3759.

    3. Chen, H., et al., Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer. RSC Adv., 2017. 7(1): p. 248-255.

    4. Chen, W., et al., Cell Membrane Camouflaged Hollow Prussian Blue Nanoparticles for Synergistic Photothermal-/Chemotherapy of Cancer. Advanced Functional Materials, 2017. 27(11): p. 1605795.

    5. Hu, M., et al., Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed Engl, 2012. 51(4): p. 984-8.

    6. Jing, L., et al., Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials, 2014. 35(22): p. 5814-21.

    7. Cai, X., et al., A Versatile Nanotheranostic Agent for Efficient Dual-Mode Imaging Guided Synergistic Chemo-Thermal Tumor Therapy. Advanced Functional Materials, 2015. 25(17): p. 2520-2529.

    8. Fu, G., et al., Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjug Chem, 2014. 25(9): p. 1655-63.

    9. Fu, G., et al., Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun (Camb), 2012. 48(94): p. 11567-9.

    10. Zhu, W., et al., Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. ACS Appl Mater Interfaces, 2015. 7(21): p. 11575-82.

    11. Kingo Itaya, I.U., Nature of Intervalence Charge-Transfer Bands in Prussian Blues. Inorg. Chem., 1986. 25: p. 389-392.

    12. Roper, D.K., W. Ahn, and M. Hoepfner, Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. J Phys Chem C Nanomater Interfaces, 2007. 111(9): p. 3636-3641.

    13. Li, W.P., et al., Controllable CO Release Following Near-Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment. ACS Nano, 2016. 10(12): p. 11027-11036.

    14. Jia, X., et al., Perfluoropentane-encapsulated hollow mesoporous prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer. ACS Appl Mater Interfaces, 2015. 7(8): p. 4579-88.

    15. Brown, J.M. and W.R. Wilson, Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer, 2004. 4(6): p. 437-47.

    16. Luo, C.H., et al., Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy. Nano Lett, 2016. 16(6): p. 3493-9.

    17. Song, X., et al., Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. Nano Lett, 2016. 16(10): p. 6145-6153.

    18. Xia, Y., H.K. Choi, and K. Lee, Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem, 2012. 49: p. 24-40.

    19. Cheng, Y., et al., Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun, 2015. 6: p. 8785.

    20. Gordijo, C.R., et al., Design of Hybrid MnO2-Polymer-Lipid Nanoparticles with Tunable Oxygen Generation Rates and Tumor Accumulation for Cancer Treatment. Advanced Functional Materials, 2015. 25(12): p. 1858-1872.

    21. Fan, W., et al., Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy. Adv Mater, 2015. 27(28): p. 4155-61.

    22. Chen, Q., et al., Intelligent Albumin-MnO2 Nanoparticles as pH-/H2 O2 -Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Adv Mater, 2016. 28(33): p. 7129-36.

    23. Cheng, Y., et al., Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun, 2015. 6: p. 8785.

    24. Xu, L., et al., Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply. J Transl Med, 2016. 14: p. 268.

    25. Song, G., et al., Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer. Adv Mater, 2016. 28(14): p. 2716-23.

    26. Keramaris, N.C., et al., Fracture vascularity and bone healing: A systematic review of the role of VEGF. Injury, 2008. 39: p. S45-S57.

    27. Brandi, C., et al., Carbon dioxide therapy in the treatment of localized adiposities: clinical study and histopathological correlations. Aesthetic Plast Surg, 2001. 25(3): p. 170-4.

    28. Koga, T., et al., Topical cutaneous CO2 application by means of a novel hydrogel accelerates fracture repair in rats. J Bone Joint Surg Am, 2014. 96(24): p. 2077-84.

    29. Li, W.P., et al., CO2 Delivery To Accelerate Incisional Wound Healing Following Single Irradiation of Near-Infrared Lamp on the Coordinated Colloids. ACS Nano, 2017. 11(6): p. 5826-5835.

    30. Keramaris, N.C., et al., Fracture vascularity and bone healing: A systematic review of the role of VEGF. Injury, 2008. 39: p. S45-S57.
    31. Alan Sandler, M.D., Robert Gray, Ph.D., Michael C. Perry, M.D., Julie Brahmer, M.D.,Joan H. Schiller, M.D., Afshin Dowlati, M.D., Rogerio Lilenbaum, M.D.,and David H. Johnson, M.D., Paclitaxel-Carboplatin Alone or with Bevacizumab for Non-Small-Cell Lung Cancer. The new england journal o f medicine, 2006. 355: p. 2542-2550.

    32. Lin, L., et al., Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sciences, 2010. 12(10): p. 1764-1769.

    33. Li, W.P., et al., CO2 Delivery To Accelerate Incisional Wound Healing Following Single Irradiation of Near-Infrared Lamp on the Coordinated Colloids. ACS Nano, 2017. 11(6): p. 5826-5835.

    34. Murdoch, C., A. Giannoudis, and C.E. Lewis, Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 2004. 104(8): p. 2224-34.

    35. Jessica A. Bertout, S.A.P.a.M.C.S., The impact of O2 availability on human cancer. Nat Rev Cancer., 2008. 8.

    36. Lin, L., et al., Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sciences, 2010. 12(10): p. 1764-1769.

    37. Rajendran, S., et al., Green Electrochemistry - A Versatile Tool in Green Synthesis: an Overview. Portugaliae Electrochimica Acta, 2016. 34(5): p. 321-342.

    38. Abdullahi Mohamed Farah, N.D.S., Force Tefo Thema, Johannes Sekomeng Modise and Ezekiel Dixon Dikio, Fabrication of Prussian Blue/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for Electrochemical Detection of Hydrogen Peroxide. Int. J. Electrochem. Sci., 2012. 7: p. 4302 - 4313.

    下載圖示 校內:2022-01-08公開
    校外:2022-01-08公開
    QR CODE