簡易檢索 / 詳目顯示

研究生: 陳品傑
Chen, Pin-Chieh
論文名稱: 非均向大地應力下之碳封存井金屬套管與水泥護套之應力與破壞分析
Stress and Failure Analysis of Metal Casing and Cement Sheath in CCS Wells under Anisotropic In-Situ Stresses
指導教授: 王建力
Wang, Chein-Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 135
中文關鍵詞: 碳封存井應力分析失效風險評估有限元素
外文關鍵詞: Carbon sequestration well, Stress analysis, Failure risk assessment, Finite element
相關次數: 點閱:61下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應工業碳排放量等問題,以及全球內閒置及廢棄井的數量劇增之趨勢,廢棄井再利用及碳封存井設置的評估有其重要性。不同類型地層、地層溫度及大地應力會對井結構造成不同程度影響,進而導致井結構失效,因此深井失效風險及其破壞條件評估為設置碳封存井重要之議題。
    本研究使用ABAQUS有限分析軟體,設定三種岩層參數,並假設不均向之大地側向應力,分析在碳封存過程時金屬套管內部從0增壓至100 MPa對井結構之應力影響及結構中金屬套管及水泥護套臨界破壞條件。本研究並分析在封存時井結構對於地層溫度的承受能力,因此設置60-210℃區間內六種環境溫度來加以觀測其應力變化。
    研究結果表明在非均向大地應力下,水泥護套所受偏應力會比金屬套管高,在楊氏模數較高岩體中最高達18.3%,且應力集中在較弱側向應力軸向,增加該方向的破壞風險;隨著套管內壓增加,不同楊氏係數的岩層對水泥護套的最小主應力產生不同影響:楊氏係數低的岩體會導致水泥護套產生環向張應力,增加剪切破壞風險,楊氏係數高的岩體則使環向壓應力增加,減少剪切破壞可能性;在封存壓力20 MPa下,地層溫度高於60°C不會導致水泥護套或金屬套管破壞,但較低地層溫度下水泥護套會有張應力產生,若低於50°C,楊氏係數低的岩體中的水泥護套可能發生張力破壞,楊氏係數高的岩體中井水泥護套則對低溫有較高抵抗性;工程上普遍設置碳封存井之岩體環境較接近於一號岩體且套管內壓為20 MPa,此壓力下井結構無剪切破壞風險但需提防地層低溫所帶來之水泥護套張力破壞。

    With rising industrial carbon emissions and an increasing number of idle and abandoned wells worldwide, evaluating the reuse of abandoned wells and establishing carbon sequestration wells is crucial. Different formation types, temperatures, and lateral stresses impact well structures, potentially causing failure.
    This study uses ABAQUS finite element analysis to model three rock formations under anisotropic lateral stress, assessing the impact of internal casing pressurization from 0 to 100 MPa on well stress and the failure conditions of the casing and cement sheath, and examines well integrity across six temperatures from 60°C to 210°C.
    The results reveal that, under anisotropic lateral stress, the cement sheath experiences up to 18.3% higher deviatoric stress than the metal casing, with stress concentrated along the weaker lateral stress axis, which increases the risk of failure in this direction. As internal casing pressure rises, rock formations with lower Young's modulus cause the cement sheath to experience tensile hoop stress, raising the risk of shear failure. In contrast, formations with higher Young's modulus induce compressive hoop stress in the cement sheath, reducing shear failure risk. At a storage pressure of 20 MPa, formation temperatures above 60°C do not lead to failure of the cement sheath or metal casing. However, at temperatures below 50°C, low Young's modulus formations increase the likelihood of tensile failure in the cement sheath, while high Young's modulus formations offer better resistance to low-temperature stress conditions. Carbon sequestration wells are typically established in formations similar to Formation 1, with an internal casing pressure of 20 MPa. While this pressure poses no shear failure risk, caution is required to prevent tensile failure of the cement sheath under low formation temperatures.

    摘要 I EXTENDED ABSTRACT II 目錄 XIX 表目錄 XXII 圖目錄 XXIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究內容與流程 6 第二章 文獻回顧 10 2.1 二氧化碳地質封存條件 10 2.2 套管水泥性質研究 12 2.2.1 水泥碳化機制 14 2.2.2 超臨界二氧化碳環境中水泥劣化研究 15 2.3 水泥護套完整性失效介紹 17 2.4 CCF力學模型 19 2.4.1 CCF理論彈性模型 19 2.4.2 熱應力耦合解析解 20 2.4.3 可變化溫度之解析解 25 2.5 圍岩性質變化對於套管應力影響 26 2.5.1 圍岩不同彈性模數下之應力變化 26 2.5.2 均勻及非均勻大地應力影響之應力變化 30 2.5.3 溫度影響之應力變化 32 第三章 研究方法 33 3.1 平面應變解析解計算 33 3.2 ABAQUS有限元素分析 38 3.3 模型建立及參數 39 3.3.1 模型及網格尺寸 40 3.3.2 材料性質 42 3.3.3 大地邊界條件 44 3.4 分析方法 45 3.4.1 極座標應力分析 45 3.4.2 金屬套管破壞分析 49 3.4.3 水泥護套破壞分析 51 第四章 模擬結果與討論 54 4.1 非均向大地應力模擬試驗 55 4.1.1 剪應力分析 57 4.1.2 金屬套管主應力分析 59 4.1.3 水泥護套主應力分析 60 4.2 封存井內壓變化模擬試驗 61 4.2.1 金屬套管應力分析 62 4.2.2 水泥護套應力分析 69 4.3 封存井地層溫度變化模擬試驗 77 4.3.1 金屬套管應力分析 78 4.3.2水泥護套應力分析 84 4.4 綜合討論 91 第五章 結論與未來展望 99 5.1 結論 99 5.2 未來展望 100 參考資料 101 附錄 104

    [1] 美國環境保護署EPA, "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2020: Updates Under Consideration for Abandoned Oil and Gas Wells " 2021.
    [2] J. M. Nordbotten, M. A. Celia, S. Bachu, and H. K. Dahle, "Semianalytical solution for CO2 leakage through an abandoned well," Environmental Science & Technology, vol. 39, no. 2, pp. 602-611, Jan 2005, doi: 10.1021/es035338i.
    [3] S. Y. Chen, K. C. Hsu, and C. L. Wang, "Impact of Time-Varying Cement Degradation on the Borehole Cement Sheath Integrity in a Supercritical CO2 Environment," International Journal of Geomechanics, vol. 22, no. 8, Aug 2022, Art no. 04022131, doi: 10.1061/(asce)gm.1943-5622.0002467.
    [4] 苗志銘 and 吳振源, "井下震波衝擊系統模擬分析," 財團法人工業技術研究院綠能與環境研究所分包研究計畫, 2023.
    [5] C. C. Kuo, C. L. Wang, and H. I. Hsiang, "Mechanical and microscopic properties of API G cement after exposure to supercritical CO2," Terrestrial Atmospheric and Oceanic Sciences, vol. 28, no. 3, pp. 209-216, Jun 2017, doi: 10.3319/tao.2015.08.20.02(gsc).
    [6] 蔡美峰, 何滿潮, and 劉東燕, 岩石力學與工程. 2002.
    [7] UNFCCC, "THE PARIS AGREEMENT," 2015.
    [8] Climate Watch – with major processing by Our World in Data. 2024.
    [9] Z. E. Zhang et al., "Advances in carbon capture, utilization and storage," Applied Energy, vol. 278, Nov 2020, Art no. 115627, doi: 10.1016/j.apenergy.2020.115627.
    [10] D. A. Voormeij and G. J. Simandl, "Geological, ocean, and mineral CO2 sequestration options:: A technical review," Geoscience Canada, vol. 31, no. 1, pp. 11-22, Mar 2004. [Online]. Available: <Go to ISI>://WOS:000220852000002.
    [11] J. R. Brydie et al., "The Development of a Leak Remediation Technology for Potential Non- Wellbore Related Leaks from CO2 Storage Sites," Energy Procedia, vol. 63, pp. 4601-4611, 2014, doi: 10.1016/j.egypro.2014.11.493.
    [12] B. Metz, O. Davidson, H. d. Coninck, M. Loos, and L. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage. United States of America by Cambridge University Press, 2005.
    [13] T. P. Irons, B. J. O. L. McPhserson, N. Moodie, R. Krahenbuhl, and Y. Li, " Integrating geophysical monitoring data into multiphase fluid flow reservoir simulation," ASEG Extended Abstracts, vol. 1, pp. 1-5, 2018, doi: 10.1071/ASEG2018abW10_3B.
    [14] S. D. C. Walsh, W. L. Du Frane, H. E. Mason, and S. A. Carroll, "Permeability of Wellbore-Cement Fractures Following Degradation by Carbonated Brine," Rock Mechanics and Rock Engineering, vol. 46, no. 3, pp. 455-464, May 2013, doi: 10.1007/s00603-012-0336-9.
    [15] M. Bagheri, S. M. Shariatipour, and E. Ganjian, "A review of oil well cement alteration in CO2 -rich environments," Construction and Building Materials, vol. 186, pp. 946-968, Oct 2018, doi: 10.1016/j.conbuildmat.2018.07.250.
    [16] Y. J. Jeong, K. S. Youm, and S. Yun, "Effect of nano-silica and curing conditions on the reaction rate of class G well cement exposed to geological CO2 sequestration conditions," Cement and Concrete Research, vol. 109, pp. 208-216, Jul 2018, doi: 10.1016/j.cemconres.2018.05.001.
    [17] X. Wu et al., "Analytical Perspectives on Cement Sheath Integrity: A Comprehensive Review of Theoretical Research," ACS Omega, vol. 9, no. 16, pp. 17741-17759, 2024/04/23 2024, doi: 10.1021/acsomega.4c00475.
    [18] R. Gholami, B. Aadnoy, and N. Fakhari, "A thermo-poroelastic analytical approach to evaluate cement sheath integrity in deep vertical wells," Journal of Petroleum Science and Engineering, vol. 147, pp. 536-546, Nov 2016, doi: 10.1016/j.petrol.2016.09.024.
    [19] H. L. Xu, N. Peng, T. S. Ma, and B. Yang, "Investigation of Thermal Stress of Cement Sheath for Geothermal Wells during Fracturing," Energies, vol. 11, no. 10, Oct 2018, Art no. 2581, doi: 10.3390/en11102581.
    [20] D. T. Mueller, V. GoBoncan, R. L. Dillenbeck, and T. Heinold, "Characterizing Casing-Cement-Formation Interactions Under Stress Conditions: Impact on Long-Term Zonal Isolation," SPE Annual Technical Conference and Exhibition, 2004, doi: 10.2118/90450-MS.
    [21] H. Jo and K. E. Gray, "Mechanical Behavior of Concentric Casing, Cement, And Formation Using Analytical And Numerical Methods," 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, 2010.
    [22] T. J. Wu, M. Li, N. A. Liu, T. Zhang, and J. W. Su, "Research on Mechanism of Non-Uniform In-Situ Stress Induced Casing Damage Based on Finite Element Analysis," Applied Sciences-Basel, vol. 14, no. 14, Jul 2024, Art no. 5987, doi: 10.3390/app14145987.
    [23] B. T. Bui and A. N. Tutuncu, "Modeling the Failure of Cement Sheath in Anisotropic Stress Field," SPE Unconventional Resources Conference Canada, 2013, doi: 10.2118/167178-MS.
    [24] A. N. Corina and A. Moghadam, "The Sealing Performance of Cement Sheaths under Thermal Cycles for Low-Enthalpy Geothermal Wells," Energies, vol. 17, no. 1, Jan 2024, Art no. 239, doi: 10.3390/en17010239.
    [25] S. Asamoto, Y. Le Guen, O. Poupard, and B. Capra, "Well integrity assessment for CO2 injection A numerical case study on thermo-mechanical behavior in downhole CO2 environments," Engineering Computations, vol. 30, no. 6, pp. 842-853, 2013, doi: 10.1108/ec-05-2012-0117.
    [26] Y. L. Guen, M. Huota, M. Loizzob, and O. Poupard, " Well Integrity Risk Assessment of Ketzin Injection Well (ktzi-201) over a Prolonged Sequestration Period," Energy Procedia, vol. 4, pp. 4076-4083, 2011, doi: 10.1016/j.egypro.2011.02.350.
    [27] E. Hoek and E. T. Brown, "Empirical Strength Criterion for Rock Masses," Journal of the Geotechnical Engineering Division, vol. 106, 1980, doi: 10.1061/AJGEB6.0001029.
    [28] R. E. Goodman, "Introduction to Rock Mechanics," 1989.
    [29] W. Chu, J. Y. Shen, Y. F. Yang, Y. Li, and D. L. Gao, "Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change," Petroleum Exploration and Development, vol. 42, no. 3, pp. 414-421, Jun 2015, doi: 10.1016/s1876-3804(15)30033-1.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE