簡易檢索 / 詳目顯示

研究生: 吳寧宜
Wu, Ning-Yi
論文名稱: 整合預測型生命週期評估模型評估在不同情境下能源科技之引進策略-以台灣電動車發展為例
Integrated utilization of consequential models for scenario-based environmental assessment of energy technology introduction strategies: A case in electric vehicles in Taiwan
指導教授: 福島康裕
Yasuhiro Fukushima
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 164
中文關鍵詞: 電動車均衡負載溫室氣體預測型生命週期評估模型
外文關鍵詞: electric vehicle, vehicle to grid (V2G), load balancing, consequential life cycle assessment, greenhouse gas (GHG) emission
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,節能科技被廣泛引進在各項產業中以解決能源危機及氣候變遷等問題,然而並無單一科技能解決所有問題,必須整合應用各技術以達到顯著之效果。 在多項技術並用下,有時能達到加成的綜效,但亦可能相互競爭甚或抵消彼此的效果,因此在檢驗各項技術的應用效果時,一個能概括這些相互影響的評估架構是必要的。
    本研究旨在建構一個針對能源科技在不同情境下引進之環境影響評估工具原型,並用於評估多項台灣節能科技的推廣政策以呈現其效果。其一為引進電動車取代傳統內燃機車輛以減少移動源之排放,同時亦可透過充電系統的建置連結電網以達到均衡負載之效用,但這也產生在充放電過程中的電力損失而抵銷了引進再生能源如太陽能及風力發電的減排效果。另一方面,電動車的引進減少汽油的需求量並進一步改變石化廠的運作。本研究整合發電結構優化模型、模擬石化廠運作之數學模型以及在不同情境下電動車使用及替換之預測模型並同時考量替代能源等節能科技引進以全面評估上述效應。
    將此結果與傳統單純將各項科技效益相加及部分整合評估比較後存在顯著的差異,縱然目前仍無法證明何種方法較正確,但此方法涵蓋科技間相互效應並進一步提供在制定政策時更完善的討論。以本研究為例,在替代能源及高效率電器引進等政策中,太陽能及風力發電系統對於電動車引進之減排貢獻最大,電動車惟有與其並行推廣始能達減排效益。

    Technology innovation in energy domain is expected to avoid the crises in resource depletion and climate change. However, no single technology can resolve all the problems. Various technologies need to be implemented jointly so as to make substantial difference. It is considered that some of the innovations exhibit synergy, while others may compete with each other or to cancel out its effects. Therefore, to understand how much technology innovations can offer to avoid the crises, an assessment framework that is capable of looking into key interactions among various innovations in energy technologies is needed. This study presents a prototype of scenario-based environmental assessment framework of energy-related technology roadmaps. The framework is demonstrated with several of the Taiwan’s roadmap in green energy technologies. By shifting internal combustion engine vehicles into electric vehicles, the emissions from mobile sources are reduced. In the meantime, load balancing can be achieved when the electric vehicles are connected to the grid through advanced charging facilities. There is inevitably a loss during recharging and discharging, which may to some extent cancel out the emission reduction achieved by introducing more renewable and cleaner energy sources, such as photovoltaic and wind power systems. Meanwhile, it reduces the demand of gasoline and hence the operation of petrochemical refineries. Power mix optimization model, consequential model for petrochemical industry, and scenario models for vehicles use and replacement are used in an integrated manner to comprehensively assess abovementioned contributions together with different context setting of introducing renewable energy and other energy saving technologies. Significant differences among the results from use of integrated models developed in the study, mere summation of individual assessment, and calculations with different level integration. While the integrated results are not yet proved to be more accurate, it incorporates known interactions, which support holistic discussions on priorities of innovation. For example in this study, the contribution in reducing emission under different assumptions, by the introduction of photovoltaic and wind systems, bioethanol and high-efficiency appliances, is compared. The results show introducing photovoltaic and wind system has the highest contribution and emission change is only made negative with it.

    Abstract i 中文摘要 iii 致謝 iv Table of contents v Figure index vii Table index x Chapter 1 Introduction 1 1.1 Preface 1 1.2 Motivation 3 1.3 Objective 5 Chapter 2 Literature Review 6 2.1 Life cycle assessment 6 2.2 Energy conversion 7 2.3 Fuel production 9 2.4 Energy consumption 10 2.5 Electric vehicle 12 2.5.1 The definition 12 2.5.2 Life cycle assessment of electric vehicle 14 2.5.3 Charging strategies of electric vehicle 17 Chapter 3 Methodology 18 3.1 Integration scheme 19 3.2 Load balancing model 23 3.3 Scenario design 25 3.3.1 Energy conversion 27 3.3.2 Fuel production 31 3.3.3 Energy consumption 32 3.4 The comparison of conventional and integrated consequential models 41 Chapter 4 Result and discussion 42 4.1 Load balancing model 43 4.2 Power mix optimization model 47 4.3 Emission change in energy conversion 56 4.4 Emission change in fuel production 60 4.5 Integrated evaluation of EV’s introduction 65 4.6 Effect of integration 67 4.6.1 Effect of considering multiple roadmaps 67 4.6.2 Effect of integration 68 Chapter 5 Conclusion 70 Chapter 6 Suggestions 73 References 78 Appendix 1 The proposed model in IDEF0structure 81 Appendix 2 Abbreviation list 85 Appendix 3 Output of each model 87 Appendix 4 Manual of integrated models 159

    [1] Earles, J.M., A. Halog, Consequential life cycle assessment: a review. The International Journal of Life Cycle Assessment, 2011. 16: p.445–453, 2011
    [2] Ekvall, T, B. Weidema, System boundaries and input data in consequential life cycle inventory analysis. The International Journal of Life Cycle Assessment, 2004. 9 (3): p.161-171, 2004
    [3] Chen, I. C., Y. Fukushima, Y. Kikuchi, M. Hirao, A graphical representation for consequential life cycle assessment of future technologies. Part 1: methodological framework, The international Journal of Life Cycle Assessment, 2012. 17 (2): p.119-125
    [4] Chao, C.-W., H.-W Ma, M.-L. Hung, The Green Economy Mirage?-Assessing the Potential Environmental Impact of Low-Carbon Growth Strategies in Taiwan, in Ecobalance 2010, Tokyo, Japan, November 9-12, 2010.
    [5] Wikipedia, Life cycle assessment. 2013; Available from: https://en.wikipedia.org/wiki/Life-cycle_assessment.
    [6] Aumann, C. Attributional versus consequential LCA. 2010; Available from: http://eco-efficiency-action-project.com/2010/03/01/attributional-versus-consequential-lca/.
    [7] Fukushima, Y., M. Shimada, S. Kraines, M. Hirao and M. Koyama, Scenarios of solid oxide fuel cell introduction into Japanese society, Journal of Power Sources, 2004. 131(1-2): p. 327-339.
    [8] Kuo, Y.-M. and Y. Fukushima, Greenhouse Gas and Air Pollutant Emission Reduction Potentials of Renewable Energy-Case Studies on Photovoltaic and Wind Power Introduction Considering Interactions among Technologies in Taiwan. Journal of the Air & Waste Management Association, 2009. 59(3): p. 360-372.
    [9] Chuang, P.-C., Implication of fossil fuel-saving technologies on inventory of petrochemical processes, in Department of Environmental Engineering 2012, National Cheng Kung University.
    [10] 能源局, 100年長期負載預測與電源開發規劃摘要報告, 2012, 經濟部.
    [11] 陳文人, 陳志洋, 江文書, 電動車充電模式與充電設備商機探討, 2010, 工研院產經中心.
    [12] H. Helms, M.P., U. Lambrecht and A. Liebich, Electric vehicle and plug-in hybrid energy efficiency and life cycle emissions, in 18th International Symposium Transport and Air Pollution 2010. p. 113-124.
    [13] Eva Szczechowicz , T.D.a. and A. Schnettler, Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int J Life Cycle Assess, 2012. 17: p. 1131-1141.
    [14] 經濟部, 智慧電動車發展策略與行動方案, 2010. p. 11.
    [15] 李名揚, 在台灣,電動車較優, 2011, 科學人.
    [16] Guille, C. and G. Gross, A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy, 2009. 37(11): p. 4379-4390.
    [17] Nebel, A., C. Kruger, and F. Merten. Vehicle to grid and Demand Side Management: An assessment of different strategies for the integration of electric vehicles. in Renewable Power Generation (RPG 2011), IET Conference, 2011.
    [18] 台灣電力公司, 台灣電動車電能管理策略, 2011. p. 10-13.
    [19] Robert Fourer, D.M.G., Brian W. Kernighan, A Modeling Language for Mathemetical Programming, 2003.
    [20] 能源局, 2010年能源產業技術白皮書, 2010, 經濟部.
    [21] 能源局, 百萬陽光屋頂計畫, 2011(a), 經濟部.
    [22] 能源局, 千架海陸風機計畫, 2011(b), 經濟部.
    [23] Kuo, T.-T., Sustainability aspects of land use changes associated with ethanol supply policy, in Department of Environmental Engineering 2011, National Cheng Kung University. p. 106.
    [24] Taipower, Annual report, 台灣電力公司企劃處, 2011.
    [25] 陳在相, 廖清榮, 電動車充電對電力品質及電力供應影響之研究 完成報告, 2011, 台灣科技大學. p. 84

    下載圖示 校內:2015-02-07公開
    校外:2015-02-07公開
    QR CODE