| 研究生: |
歐哲先 Ou, Tse-Hsien |
|---|---|
| 論文名稱: |
氮化鎵/氮化銦鎵奈米晶體之成長與元件製作 Growth of Gallium Nitride and Indium Gallium Nitride Nanocrystals for Device Fabrication |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積法 、奈米柱 、氮化鎵 、氮化銦鎵 、氮化鎂 、p−n接面 、電致發光 、單一量子井 、發光二極體 |
| 外文關鍵詞: | plasma-enhanced chemical vapor deposition, nanorods, gallium nitride, Indium Gallium Nitride, Magnesium nitride, p−n junction, electroluminescence, Single quantum well, light-emitting diodes |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氮化鎵具有極佳之光電特性,常用以製作發光二極體、雷射二極體、太陽能電池、光感測元件、高功率電晶體以及高載子遷移率電晶體。一維奈米結構具有獨特高比表面積與低缺陷濃度之特性,已廣泛地應用於各種光電元件之製作。然,本研究將結合氮化鎵與一維奈米結構之優勢,以本實驗室自行開發之爐管型電漿輔助化學氣相沉積設備,成長一維氮化鎵奈米結構。本研究成長氮化鎵材料採用自組裝之成長機制,其將藉以鎵金屬與氮氣作為氮化鎵之前驅物。
本研究成功在Si(100)及c-Sapphire基板上,成長出垂直於基板表面之氮化鎵奈米柱,其藉由掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、顯微光致激發光譜儀(Micro-PL),以驗證為六角形晶體(Hexagonal structure)、c-plane成長方向、低缺陷濃度且能隙約為3.42eV。另外以氮化鎂(Mg2N3)作摻雜物質以成長p型氮化鎵,藉由摻雜物質蒸氣壓之提升,輔以Micro-PL測量氮化鎵特徵峰往高波長移動以驗證p型氮化鎵之形成,進而成長了具p−n接面之氮化鎵奈米柱,並製作為發光二極體。由元件之電流−電壓整流曲線可證實p−n接面之存在。此外,在30 mA之驅動電流下,也觀察到紫色的電致發光現象。
然,為了改善需於高驅動電壓與電流才可電致發光之問題,其為使電子電洞復合效率提高,其本研究藉由銦摻雜於氮化鎵晶體以形成氮化銦鎵,其藉由銦組成含量以調控能隙大小,使其併入p-n結構中而形成量子井以提高電子電洞復合之機率。本研究將藉以銦金屬、鎵金屬與氮氣成長氮化銦鎵晶體於氮化鎵奈米柱,並藉由X光繞射儀(XRD)與Micro-PL,以判別氮化銦鎵之生成與能隙,並接續於氮化銦鎵晶體上成長p型氮化鎵晶體,進而成長具p-i-n結構之單一量子井發光二極體元件,本研究亦藉由TEM以分析接面所產生之缺陷並進行電性量測。然,由元件之電流−電壓整流曲線可證實p−n接面之存在,但具有明顯之並聯與串聯電阻。其電性結果亦可證明我們所成長之p-i-n接面具有較多之缺陷而造成非輻射複合效率高而未能觀測有電致發光之現象。
GaN is an excellent semiconductor material for applications of light emitting diode, laser diode, sensor and high mobility transistor due to its intrinsic property. The anisotropic property of 1-D nano-structure has been applied in many fields such as optoelectronic devices. In this work, we combine these two advantages and present a self-developed PECVD system for the 1-D nano structural GaN growth. The GaN nanorods are grown via self-assembled mechanism while using Gallium metal and Nitrogen as the GaN precursors.
In this study, the vertically-aligned GaN nanorods are successfully grown on both the Si (100) and c-sapphire substrate. The nanorods morphology and crystal quality are investigated by the Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM) and Micro- Photoluminescence (Micro-PL) to identify. The analytic results for the GaN nanorods, which possess the Hexagonal structure, prefer c-plane orientation, low defect density and a band gap about 3.4eV. We also used the Magnesium nitride (Mg3N2) as the p-type GaN dopant precursor, then analyzed by the Micro-PL. In the Micro-PL result, we observed the Near-Band-Edge peak red shift indicating that the existence of p-type GaN.
The GaN nanorods with p−n junctions were made into light emitting diode devices. The rectifying I−V curves further confirmed the formation of p−n junction in the GaN nanorods with the violet electroluminescence found under 30 mA. We also investigated the critical factor for the lower radiative recombination efficiency of GaN nanorods-based LED. Our intrinsic and p-type GaN nanorods have shown a low free carriers concentration, indicating the LED device is made without enough electrons and holes to carry out radiative recombination.
To solve the lower electron-hole recombination, we introduced the lower band gap semiconductor material, Indium Gallium Nitride (InGaN), between the p-n junction to form the quantum well to increase the efficiency of electron-hole recombination. For fabrication of the InGaN crystal, we used the Indium, Gallium metal and Nitrogen as the precursors. The Micro-PL and X-Ray Diffraction (XRD) are used to identify the Band gap shift and lattice constant change. Since the growth condition change leads to heteroepitaxy, we used the TEM to observe the surface defect between the GaN and InGaN. The GaN nanorods with p−i−n single quantum well were made into light emitting diode devices. The rectifying I−V curves could be found where the I−V curves present both the parallel and series resistance that further confirmed the surface defect formation between the GaN and InGaN surface. In this part, the electroluminescence phenomena was not found. We proposed that the large amount of defect inside the crystal have increased the efficiency of non-radiative recombination.
[1] Http://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3
[2] Http://www.energystar.gov/index.cfm?c=products.pr_pie
[3] 史光國,半導體發光二極體及固體照明,全華圖書,台灣2010
[4] Http://www1.eere.energy.gov/buildings/ssl/sslbasics_whyssl.html
[5] Http://en.wikipedia.org/wiki/Graphene
[6] W. Lu, P. Xie and C. M. Lieber, “Nanowire transistor performance limits and applications,” IEEE Transactions on Electron Devices, vol. 55, pp. 2859, 2008.
[7] F. Qian, S. Gradečak, Y. Li, C. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Letters, vol. 5, pp. 2287, 2005.
[8] M. A. Zimmler, F. Capasso, S. Müller and C. Ronning, ”Optically
pumped nanowire lasers: invited review," Semiconductor Science and Technology, vol. 25, pp. 024001, 2010.
[9] B. Tian, T. J. Kempa and C. M. Lieber, “Single nanowire photovoltaics,” Chemical Society Reviews, vol. 38, pp. 16, 2009.
[10] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annual Review of Materials Research, vol. 41, pp. 269, 2011.
[11] V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J.
Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux and C. Berven, “Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles,” Journal of Applied Physics, vol. 99, pp. 104302, 2006.
[12] A. K. Wanekaya, W. Chen, N. V. Myung and A. Mulchandani, “Nanowire-based electrochemical biosensors,” Electroanalysis, vol. 18, pp. 533, 2006.
[13] Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung,”High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays”Nano Letters,vol. 4, no. 6, pp 1059-1062, 2004
[14] Czeslaw Skierbiszewski, Marcin Siekacz, Henryk Turski, Grzegorz Muziol, Marta Sawicka, Pawel Wolny, Grzegorz Cywin´ ski, Lucja Marona, Piotr Perlin, Przemysław Wis´niewski, Martin Albrecht, Zbigniew R. Wasilewski, and Sylwester Porowski,“True-Blue Nitride Laser Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy”, The Japan Society of Applied Physics, pp. 112103-1 – 112103-3, 2012
[15] K. Keem, H. Kim, G.-T. Kim, J. S. Lee, B. Min, K. Cho, M.-Y. Sung, and S. Kim, “Photocurrent in ZnO nanowires grown from Au electrodes”, Applied Physics Letters.vol. 84, no. 22 , pp.4376 -4378, 2004
[16] Y. Fujiyama, Y. Kuwahara, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki ,”GaInN/GaN p-i-n light-emitting solar cells” ,Phys. Status Solidi C,vol. 7, no. 10, pp.2382-2385, 2010
[17] WANG XiaoLi, WANG XiaoHui, JIA HaiQiang, XING ZhiGang & CHEN Hong ,”Recent progress in single chip white light-emitting diodes with the InGaN underlying layer”, SCIENCE CHINA
Physics, Mechanics & Astronomy, vol.53 no.3, pp. 445–448, 2010
[18] H. Amono, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”,Japanese Journal of Applied Physics, Vol 28, pp.L2112-2114 ,1989
[19] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films” ,Japanese Journal of Applied Physics, vol 31, pp. 1258-1266,1992
[20] C.W. Chin, F.K. Yam , K.P. Beh, Z. Hassan, M.A. Ahmad, Y. Yusof, S.K. Mohd Bakhori, “ The growth of heavily Mg-doped GaN thin film on Si substrate by molecular beam epitaxy”, Thin Solid Films, vol 520 pp. 756–760, 2011
[21] Akihiko Kikuchi*a,b, Makoto Tadaa, Kyoko Miwaa and Katsumi Kishinoa, ,“Growth and characterization of InGaN/GaN nanocolumn LED”, Proceedings of SPIE, Proc. of SPIE Vol. 6129 612905-1 – 612905-8, 2006
[22] Akihiko Kikuchi, Makoto Tada, Kyoko Miwa and Katsumi Kishino, Quantum Dots, Particles, and Nanoclusters III, edited by Kurt G. Eyink, Diana L. Huffaker, Proc. of SPIE Vol. 6129, 612905, (2006)
[23] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, Second ed. Berlin: Springer-Verlag, 2000.
[24] Http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
[25] Http://en.wikipedia.org/wiki/Crystal_structure
[26] S. Porowski, "Growth and properties of single crystalline GaN substrates and homoepitaxial layers," Materials science & engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997.
[27] M. E. Levinshteĭn, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: John Wiley and Sons, 2001.
[28] D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., "Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy," Applied Physics Letters, vol. 77, pp. 1464-1466, 2000.
[29] J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999.
[30.] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., "Nanoindentation of epitaxial GaN films," Applied Physics Letters, vol. 77, pp. 3373-3375, 2000.
[31] Http://www.mem.com.tw/article_content.asp?sn=1208310013
[32] H. Morkoç, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999.
[33] Shuji Nakamura ,GaN Growth Using GaN Buffer Layer, Japanese Journal of Applied Physics, vol. 30,no. 10A, L1705-L1707,1991
[34] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, and H. L¨uth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett., vol. 5, pp. 981–984, 2005.
[35] N. A. Sanford, P.T. Blanchard, K. A. Bertness, L. Mansfield, J.B. Schlager, A. W. Sanders, A. Roshko, B. B. Burton, and S. M. George, “Steadystate and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy,” J. Appl. Phys, vol. 107, p. 034318, Mar. 2010.
[36] Toma Stoica, Raffaella Calarco,”Doping of III-Nitride Nanowires Grown by Molecular Beam Epitaxy”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 17, NO. 4, pp.859-868 ,2011
[37] K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, H. Lüth,”Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires”, JOURNAL OF APPLIED PHYSICS vol 105, pp.123707 ,2009
[38] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, "Gallium Nitride Nanowire Nanodevices," Nano Letters, vol. 2, pp. 101-104, 2002.
[39] E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, et al., "Modification of GaN(0001) growth kinetics by Mg doping," Applied Physics Letters, vol. 84, pp. 2554-2556, Apr 2004.
[40] Nakamura, Shuji; Mukai, Takashi; Senoh, Masayuki; Iwasa, Naruhito
,”Thermal Annealing Effects on P-Type Mg-Doped GaN Films”
Japanese Journal of Applied Physics, Volume 31, Issue 2B, pp. L139-L142 (1992).
[41] Gotz, W. , Palo Alto, Johnson, Bour, McCluskey, Haller,”Local vibrational modes of the Mg–H acceptor complex in GaN”, Applied Physics Letters (Volume:69 , Issue: 24 )Date of Publication: Dec 1996Page(s):3725 - 3727
[42] H. Harima, T. Inoue, S. Nakashima, M. Ishida, and M. Taneya
,”Local vibrational modes as a probe of activation process in p-type GaN” Appl. Phys. Lett. 75, 1383 (1999)
[43] E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, "The effect of Mg doping on GaN nanowires," Nanotechnology, vol. 17, pp. 5735-5739, Dec 2006.
[44] G. S. Cheng, A. Kolmakov, Y. X. Zhang, M. Moskovits, R. Munden, M. A. Reed, et al., "Current rectification in a single GaN nanowire with a well-defined p-n junction," Applied Physics Letters, vol. 83, pp. 1578-1580, Aug 2003.
[45] Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Letters, vol. 3, pp. 343-346, Mar 2003.
[46] J. R. Soulen, P. Sthapitanonda, and J. L. Margrave, "Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2," Journal of Physical Chemistry, vol. 59, pp. 132-136, 1955.
[47] TEVYE KUYKENDALL, PHILIPP ULRICH, SHAUL ALONI , PEIDONG YANG1,” Complete composition tunability of InGaN nanowires using a combinatorial approach” nature materials VOL 6 DECEMBER 2007,951
[48] The Blue Laser Diode
[49] H. Sekiguchi, K. Kishino, and A. Kikuchi," Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate“Applied Physics Letters ,96, 231104, 2010.
[50] Http://www.veeco.com.tw/
[51] F.K. Yam_, Z. Hassan,”InGaN: An overview of the growth kinetics, physical properties and emission mechanisms”, Superlattices and Microstructures 43 (2008) 1–23
[52] Hironori Komakia,b,, Ryuji Katayamac, Kentaro Onabec, Masashi Ozekib, Tetsuo Ikarib,”Nitrogen supply rate dependence of InGaN growth properties,by RF-MBE”, Journal of Crystal Growth vol 305 12–18, 2007
[53] A.-L. Bavencove*,1, G. Tourbot**,1, E. Pougeoise1, J. Garcia1, P. Gilet1, F. Levy1, B. Andre´ 1, G. Feuillet1,B. Gayral2, B. Daudin2, and Le Si Dang ,“GaN-based nanowires: Fromnanometric-scale characterization to lightemitting diodes”, Phys. Status Solidi A 207, No. 6, 1425–1427 (2010)
[54] J. Sanchez-Paramoa, J.M. Callejaa, M.A. Sanchez-Garcab, E. Callejab, U. Jahnc,”Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE”, Physica E 13 (2002) 1070 – 1073
[55] Takuya Tabata*, Jihyun Paek, Yoshio Honda, Masahito Yamaguchi, and Hiroshi Amano,”Growth of InGaN nanowires on a (111)Si substrate by RF-MBE”, P hys. Status Solidi C 9, No. 3–4, 646–649 (2012)
[56] Akihiko Kikuchi*a,b, Makoto Tadaa, Kyoko Miwaa and Katsumi Kishinoa,b ,”Growth and characterization of InGaN/GaN nanocolumn LED” Proc. of SPIE Vol. 6129, 612905, (2006)
[57] H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi,”p-Type Modulation Doped InGaN/GaN Dot-in-a-Wire White-Light-Emitting Diodes Monolithically Grown on Si(111)”, Nano Lett. 2011, 11, 1919–1924
[58] H. W. Seo,1,a_ L. W. Tu,2 Y. T. Lin,2 C. Y. Ho,2 Q. Y. Chen,2 L. Yuan,1 D. P. Norman,1 andN. J. Ho3,” p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance”, APPLIED PHYSICS LETTERS 94, 201907 _2009_
[59] Chih-Yen Chen,1 Chieh Hsieh, Che-Hao Liao, Wei-Lun Chung, Hao-Tsung Chen,1Wenyu Cao, Wen-Ming Chang, Horng-Shyang Chen,1 Yu-Feng Yao,Shao-Ying Ting, Yean-Woei Kiang, Chih-Chung (C. C.) Yang, and Xiaodong Hu,”Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode”, 7 May 2012 / Vol. 20, No. 10 / OPTICS EXPRESS 11321
[60] Yin Haibo, Wang Xiaoliang, Ran Junxue, Hu Guoxin, Zhang Lu, Xiao Hongling, Li Jing, Li Jinmin ,”High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system” ,Vol. 32, No. 3 Journal of Semiconductors March 2011
[61] RW Martin1, P R Edwards, R Pecharroman-Gallego, C Liu,
C J Deatcher, I M Watson, K P O’Donnell ,”Light emission ranging from blue to red from a series of InGaN/GaN single quantum wells”, JOURNAL OF PHYSICS D: APPLIED PHYSICS, 35 (2002) 604
[62] D. Zubia and S. D. Hersee, "Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials," Journal of Applied Physics, vol. 85, pp. 6492-6496, 1999.
[63] A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting," Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2296-2301, 2011.
[64] S. Li and A. Waag, "GaN based nanorods for solid state lighting," Journal of Applied Physics, vol. 111, p. 071101, 2012.
[65] H. J. Fan, P. Werner, and M. Zacharias, "Semiconductor nanowires: From self-organization to patterned growth," Small, vol. 2, pp. 700-717, 2006.
[66] G. Seryogin, I. Shalish, W. Moberlychan, and V. Narayanamurti, "Catalytic hydride vapour phase epitaxy growth of GaN nanowires," Nanotechnology, vol. 16, pp. 2342-2345, 2005.
[67] J. Li, C. Lu, B. Maynor, S. Huang, and J. Liu, "Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by "Dip-Pen" Nanolithographic Techniques," Chemistry of Materials, vol. 16, pp. 1633-1636, 2004.
[68] C. Y. Nam, J. Y. Kim, and J. E. Fischer, "Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth," Applied Physics Letters, vol. 86, pp. 1-3, 2005.
[69] R. S. Wagner and W. C. Ellis, "Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth," Applied Physics Letters, vol. 4, pp. 89-90, 1964.
[70] B. Liu, Y. Bando, C. Tang, F. Xu, and D. Golberg, "Quasi-aligned single-crystalline GaN nanowire arrays," Applied Physics Letters, vol. 87, p. 073106, 2005.
[71] Y. B. Tang, X. H. Bo, C. S. Lee, H. T. Cong, H. M. Cheng, Z. H. Chen, et al., "Controllable synthesis of vertically aligned p-type GaN nanorod arrays on N-type Si substrates for heterojunction diodes," Advanced Functional Materials, vol. 18, pp. 3515-3522, 2008.
[72] W.-C. Hou, L.-Y. Chen, W.-C. Tang, and F. C. N. Hong, "Control of seed detachment in Au-assisted GaN nanowire growths," Crystal Growth and Design, vol. 11, pp. 990-994, 2011.
[73] W. C. Hou, L. Y. Chen, and F. C. N. Hong, "Fabrication of gallium nitride nanowires by nitrogen plasma," Diamond and Related Materials, vol. 17, pp. 1780-1784, Jul-Oct 2008.
[74] W. C. Hou and F. C.-N. Hong, "Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires," Nanotechnology, vol. 20, 2009.
[75] W.-C. Hou, T.-H. Wu, W.-C. Tang, and F. C.-N. Hong, "Nucleation control for the growth of vertically aligned GaN nanowires," Nanoscale Research Letters, vol. 7, pp. 1-15, 2012.
[76] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. Yang, "Watching GaN nanowires grow," Nano Letters, vol. 3, pp. 867-869, 2003.
[77] V. Purushothaman,a V. Ramakrishnanb and K. Jeganathana ,”Interplay of VLS and VS growth mechanism for GaN nanowires by a selfcatalytic”, The Royal Society of Chemistry Advances 2012, 2, 4802–4806
[78] J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, and L. J. Lauhon, "Alternative catalysts for VSS growth of silicon and germanium nanowires," Journal of Materials Chemistry, vol. 19, pp. 849-857, 2009.
[79] S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, "Germanium Nanowire Growth Below the Eutectic Temperature," Science, vol. 316, pp. 729-732, 2007.
[80] C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, et al., "Direct comparison of catalyst-free and catalyst-induced GaN nanowires," Nano Research, vol. 3, pp. 528-536, 2010.
[81] R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, "Luminescence from stacking faults in gallium nitride," Applied Physics Letters, vol. 86, p. 021908, 2005.
[82] P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, "Emission properties of a -plane GaN grown by metal-organic chemical-vapor deposition," Journal of Applied Physics, vol. 98, p. 093519, 2005.
[83] J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Chon, T. Joo, et al., "Photoluminescent characteristics of Ni-catalyzed GaN nanowires," Applied Physics Letters, vol. 89, p. 043124, 2006.
[84] C. Cheze, L. Geelhaar, B. Jenichen, and H. Riechert, "Different growth rates for catalyst-induced and self-induced GaN nanowires," Applied Physics Letters, vol. 97, p. 153105, 2010.
[85] J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008.
[86] M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., "Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1)," Journal of Crystal Growth, vol. 183, pp. 23-30, 1998.
[87] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, "Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks," Journal of Crystal Growth, vol. 189-190, pp. 138-141, 1998.
[88] K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, "Spontaneously grown GaN and AlGaN nanowires," Journal of Crystal Growth, vol. 287, pp. 522-527, 2006.
[89] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)," Applied Physics Letters, vol. 90, p. 123117, 2007.
[90] K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, "Nucleation conditions for catalyst-free GaN nanowires," Journal of Crystal Growth, vol. 300, pp. 94-99, 2007.
[91] Http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/
pn_junction.html
[92] Blue InGaN Quantum Well LED Fabrication, Mike Grundmann, Jason Haaheim, Amir Moshar, Joe Summers,Shuji Nakamura
[93] J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institute of Physics. Bristol and Philadelphia: Institute of Physics Publishing, 1995.
[94] Http://serc.carleton.edu/research_education/geochemsheets/
electroninteractions.html
[95] 汪建民,材料分析,中國材料科學學會,新竹市,頁別,2009
[96] Http://zh.wikipedia.org/wiki/File:Scheme_TEM_en.svg
[97] 吳東憲,以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件 之應用,國立成功大學化工系博士論文,民國101年
[98] 蔡文益,氮化鎵奈米晶體之成長及應用,國立成功大學化工系碩士論 文,民國101年
[99] A. Kuramata, K. Horino, K. Domen, K. Shinohara, and T. Tanahashi, "High-quality GaN epitaxial layer grown by metalorganic vapor phase epitaxy on (111) MgAl2O4 substrate," Applied Physics Letters, vol. 67, pp. 2521-2521, 1995.
[100] W. Kim, A. Salvador, A. E. Botchkarev, O. Aktas, S. N. Mohammad, and H. Morcoc, "Mg-doped p-type GaN grown by reactive molecular beam epitaxy," Applied Physics Letters, vol. 69, pp. 559-559, 1996.
[101] M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Venne´gue`s, et al., "Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire," Materials Science and Engineering: B, vol. 50, pp. 97-104, 1997.
[102] J. K. Sheu, Y. K. Su, G. C. Chi, B. J. Pong, C. Y. Chen, C. N. Huang, et al., "Photoluminescence spectroscopy of Mg-doped GaN," Journal of Applied Physics, vol. 84, pp. 4590-4594, 1998.
[103] A. K. Viswanath, E. J. Shin, J. I. Lee, S. Yu, D. Kim, B. Kim, et al., "Magnesium acceptor levels in GaN studied by photoluminescence," Journal of Applied Physics, vol. 83, pp. 2272-2275, 1998.
[104] F. LIMBACH, E. O. SCHÄFER-NOLTE, R. CATERINO, T. GOTSCHKE, T. STOICA, E. SUTTER, R. CALARCO, "Morphology and optical properties of Mg doped GaN nanowires in dependence of growth temperature"JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, vol. 12, no. 6, pp. 1433 – 1441 ,2010
[105] 郭浩中、賴芳儀、郭守義,LED原理與應用,五南圖書出版股份有限公司,台北市,頁別,2011
[106] 李易宸、控制氮化鎵奈米柱密度之成長 ,國立成功大學化工系碩士論文,民國101年
[107] P. Hartman and P. Bennema, "The attachment energy as a habit controlling factor. I. Theoretical considerations," Journal of Crystal
Growth, vol. 49, pp. 145-156, 1980.
校內:2023-12-31公開