研究生: |
許紹倫 Xu, Shao-Lun |
---|---|
論文名稱: |
以表面預處理及閘極後熱退火製備之氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體 Surface Pretreatment in AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Post Gate Annealing |
指導教授: |
王永和
Wang, Yeong-Her |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 氮化鋁鎵/氮化鎵 、高電子遷移率電晶體 、四甲基氫氧化銨溶液 、原子層沉積法 、氧化鋁鉿 、閘極後熱退火 |
外文關鍵詞: | AlGaN/GaN, high electron mobility transistors (HEMTs), TMAH treatment, Atomic Layer Deposited (ALD), HfO2, post gate annealing (PGA) |
相關次數: | 點閱:152 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鋁鎵/氮化鎵高電子遷移率電晶體(HEMT)具有高崩潰電場,高電子遷移率和高電子密度,因此在高功率下具有出色的性能。然而,閘極及汲極的漏電流卻會對元件輸出特性及元件表現上造成影響。因此,在本實驗中採取了兩階段的表面處理,透過減少元件缺陷來抑制漏電流。利用四甲基氫氧化銨溶液法去除氮化鎵表面原生氧化層及蝕刻造成的表面損傷;透過閘極後熱退火減少磊晶產生之介面狀態缺陷及晶格不匹配產生之缺陷,以提升元件輸出特性。本實驗之以原子層沉積法製備氧化鋁鉿閘極介電層及兩階段表面處理之氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體在閘極5 V時的最大汲極電流為791 mA/mm,最大轉導值為130 mS/mm,次臨界擺幅與電流開關比分別為91 mV/dec與1.2 × 109。閘極漏電流有效地被抑制住來到了1.31 × 10-10 A/mm,三端的崩潰電壓也提升到了200 V。
AlGaN/GaN High Electron Mobility Transistor (HEMT) devices deliver excellent performance in high power applications owing to their wide bandgap, high electron mobility, and high electron sheet density. Nevertheless, the leakage current of the gate and the drain has an impact on the output performance of the device. In this thesis, a two-stage surface treatment is adopted to reduce leakage current by removing device defects. A tetramethylammonium hydroxide solution is applied to remove the native oxide on the GaN surface and the surface damage caused by etching. Post-gate annealing is used to reduce the interface state defects caused by the epitaxy process and lattice mismatch. In this thesis, the maximum drain current of HfO2 AlGaN/GaN MOSHEMT is 791 mA/mm at VG = 5 V. The maximum transduction value is 130 mS/mm, and the subcritical swing and on-off ratio are 91 mV/decade and 1.2 × 109, respectively. The gate leakage current is effectively suppressed to 1.31 × 10-10 A/mm, and the breakdown voltage of the three terminals is also raised to 200 V.
[1] U.K. Mishra , P. Parikh , and Y.F. Wu, “AlGaN/GaN HEMTs-an overview of device operation and applications,” Proceedings of the IEEE, vol. 90, pp. 1022-1031, 2002.
[2] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs,” IEEE Transactions on Electronic Devices, vol. 48, no. 3, pp.586-590, Mar. 2001
[3] F. Roccaforte, G. Greco, P. Fiorenza and F. Iucolano, “An Overview of Normally-Off GaN-Based High Electron Mobility Transistors,” Materials (Basel), 12(10): 1599, May 2019. doi: 10.3390/ ma12101599.
[4] B.J. Baliga, “Power Semiconductor Device Figure of Merit for High-Frequency Applications,” IEEE Electron Device Letters, vol. 10, no. 10, Oct. 1989.
[5] P. Murugapandiyan, S. Ravimaran, and J. William, “DC and microwave characteristics of Lg 50 nm T-gate InAlN/AlN/GaN HEMT for future high power RF applications,” AEU-International Journal of Electronics and Communications, vol. 77, pp. 163-168, Jul. 2017.
[6] M. Micovic, A. Kurdoghlian, H.P. Moyer, P. Hashimoto, A. Schmitz, I. Milosavljevic, P.J. Willadsen, W.S. Wong, J. Duvall, M. Hu, M. Wetzel, and D.H. Chow, “GaN MMIC technology for microwave and millimeter-wave applications.” IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC'05, IEEE, 2005.
[7] S.C. Jain, J. Narayan, and R.V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” Journal of Applied Physics, vol. 87, issue 3, pp. 965-1006, Oct. 2000.
[8] W.S. Tan, M.J. Uren, P.W. Fry, P.A. Houston, and R.S. Balmer, “High temperature performance of AlGaN/GaN HEMTs on Si substrates,” Solid-State Electronics, vol. 50, issue 3, pp. 511-513, Oct. 2006.
[9] G.H. Jessen, R.C. Fitch, J.K. Gillespie, G. Via, A. Crespo, D.Langley, D.J. Denninghoff, M. Trejo, and E.R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices,” IEEE Transactions on Electron Devices, vol. 54, issue 10, pp. 2589-2597, Mar. 2007.
[10] G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, T.L. Wu, M.V. Hove, D.M. Stoffels,S. Decoutere, and E. Zanoni, “Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate,” Microelectronics Reliability, vol. 58, pp. 151-157, Mar. 2016.
[11] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Transactions on electron devices, vol. 53, no. 2,pp. 356-362, Feb. 2006.
[12] K.J. Chen, L. Yuan, M.J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B.K. Li, and J.N. Wang, “Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology,” 2011 International Electron Devices Meeting. IEEE, Dec. 2011.
[13] C. Yang, X. Luo, T. Sun, A. Zhang, D. Ouyang, S. Deng, J. Wei , and B. Zhang, “High Breakdown Voltage and Low Dynamic ON-Resistance AlGaN/GaN HEMT with Fluorine Ion Implantation in SiNx Passivation Layer,” Nanoscale research letters, Lett. 14, 191, May 2019.
[14] O. Hilt, A. Knauer, F. Brunner, E.B. Treidel, and J. Würfl, “Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer,” 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD). IEEE, Aug. 2010.
[15] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík, “Gate reliability investigation in normally-off p-type-GaN cap/AlGaN/GaN HEMTs under forward bias stress,” IEEE Electron Device Letters, vol. 37, no. 4, pp. 385-388, Apr. 2016.
[16] T. Hashizumea, K. Nishiguchia, S. Kanekia, J. Kuzmikb, and Z. Yatabec, “State of the art on gate insulation and surface passivation for GaN-based power HEMTs,” Materials science in semiconductor processing, vol. 78, pp. 85-95, 2018.
[17] V. Desmaris, J.Y. Shiu, N. Rorsman, H. Zirath, and E.Y.Chang, “Influence of oxynitride (SiOxNy) passivation on the microwave performance of AlGaN/GaN HEMTs,” Solid-state electronics, vol. 52, issue 5,pp. 632-636, May 2008.
[18] R. Stoklas, D. Gregušová, S. Hasenöhrl, E. Brytavskyi, M. Ťapajna, K. Fröhlich, Š. Haščík, M. Gregor, and J. Kuzmík, “Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition,” Applied Surface Science, vol. 461,pp. 255-259, Dec. 2018.
[19] K. Nishiguchi, S. Kaneki, S. Ozaki, and Tamotsu Hashizume, “Current linearity and operation stability in Al2O3-gate AlGaN/GaN MOS high electron mobility transistors,” Japanese Journal of Applied Physics, vol. 56, no.10, Sep. 2017.
[20] J. Chen, T. Kawanago, H. Wakabayashi, K. Tsutsui, H. Iwai, D. Nohata, H. Nohira, and K.Kakushima, “La2O3 gate dielectrics for AlGaN/GaN HEMT,” Microelectronics Reliability, vol. 60, pp. 16-19, May 2016.
[21] Y. C. Yeo, T. J. King, and Chenming Hu, “MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations,” Trans. Electron Devices, vol. 50, issue 4, Jun. 2003.
[22] J.W. Do, H.W. Jung, M.J. Shin, H.K. Ahn, H. Kim, R.H.Kim, K.J. Cho, S.J. Chang, B.G. Min, H.S. Yoon, J.H. Kim, J.M. Yang, J.H. Lee, and J.W. Lim, “The effects of tetramethylammonium hydroxide treatment on the performance of recessed-gate AlGaN/GaN high electron mobility transistors,” Thin Solid Films, vol. 628, no. 30, pp. 31-35, Apr. 2017.
[23] D.H. Son, Y.W. Jo, C.H. Won, J.H. Lee, J.H. Seo, S.H. Lee, J.W. Lim, J.H. Kim, I.M. Kang, S.C, and J.H. Lee, “Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching,” Solid-State Electronics, vol. 141, pp. 7-12, Mar. 2018.
[24] Y.J. Yoon, J.H. Seo, M.S. Cho, H.S. Kang, C.H. Won, I. M. Kang, and J.H. Lee, “TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs,” Solid-State Electronics, vol. 124, pp. 54-57, Oct. 2016.
[25] Z. Xu, J. Wang, Y. Cai, J. Liu, C.J, Z. Yang, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, and Y. Hao, “Enhancement mode (E-mode) AlGaN/GaN MOSFET with 10-13A/mm leakage current and 1012 ON/OFF current ratio,” IEEE Electron Device Letters, vol. 35, no .12, pp. 1200-1202, Oct. 2014.
[26] S. Yang, S. Huang, M. Schnee, Q.T. Zhao, J. Subert, and K.J. Chen,. “Fabrication and Characterization of Enhancement-Mode High-k LaLuO-AlGaN/GaN MIS-HEMTs,” IEEE transactions on electron devices, vol. 60, no.10, pp. 3040-3046, Oct. 2013.
[27] P.H. Jefferson, “The electrical properties of highly mismatched semiconductor materials,” pp. 1-4, May 2009.
[28] B.S Kang, H.T. Wang, L.C Tien, F. Ren, B.P. Gila, D.P. Norton, C.R. Abernathy, J. Lin, and S.J. Pearton, “Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors,” Sensors, vol. 6, pp. 643-666, Jun. 2006.
[29] Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,”Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[30] S.H, M. DiDomenico Jr, and I. Camlibel. “Relationship between linear and quadratic electro‐optic coefficients in LiNbO3, LiTaO3, and other oxygen‐octahedra ferroelectrics based on direct measurement of spontaneous polarization,” Applied Physics Letters, vol. 12, no. 6, pp. 209-211, Mar. 1968.
[31] K. Chen, and D.A. Drabold, “First principles molecular dynamics study of amorphous AlxGa1−xN alloys,” Journal of applied physics, vol. 91, no. 12, pp. 9743-9751, Jun. 2002.
[32] B.E. Foutz, O. Ambacher, M.J. Murphy, V. Tilak, and L.F. Eastman, “Polarization Induced Charge at Heterojunctions of the III–V Nitrides and Their Alloys,” physica status solidi (b), pp. 415-418, Nov. 1999.
[33] L. Bouzaïene, M.H. Gazzah, H. Mejri, and H. Maaref, “Back doping design in delta-doped AlGaN/GaN heterostructure field-effect transistors,” Solid state communications, vol. 140, no. 6, pp. 308-312, Nov. 2006.
[34] Y.C. Kong, Y.D. Zheng, C.H. Zhou, S.L. Gu, R. Zhang, P. Han, Y. Shi , and R.L. Jiang, “Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures,” Applied Physics A, vol. 84, pp. 95-98, Apr. 2006.
[35] F. Bernardini, and V. Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. 56, Oct. 1997.
[36] H.X. Guang, Z.D. Gang, J.D. Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chinese Physics B, vol. 24, no. 6, pp. 067301-0673015, Apr. 2015.
[37] S.J. Cai, R. Li, Y.L. Chen, L. Wong , W.G. Wu, S.G. Thomas, and K.L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contacts,” Electronics Letters, vol. 34, no. 24, pp. 2354-2356, Nov. 1998.
[38] Magnetron Sputtering: Types of coating process and advantages. https://www.alcatechnology.com/en/blog/magnetron-sputtering/.
[39] E. Langereis, S.B.S. Heil, H.C.M. Knoops, W. Keuning, M.C.M. van de Sanden, and W.M.M. Kessels, “In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition,” Journal of Physics D:Applied Physics, vol. 42, no. 7, pp.073001, Mar. 2009.
[40] https://www.nanosurf.com/en/support/afm-operating-principle
[41] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1661–1663, Mar. 2002
[42] X. Cui, W. Cheng, Q. Hua, R. Liang, W. Hu, Z.L. Wang, “Enhanced performances of AlGaN/GaN HEMTs with dielectric engineering of HfZrOx,” Nano Energy, vol. 68, pp. 104361, Feb. 2020.
[43] W. Choi, H. Ryu, O. Seok, M. Kim, H.Y. Cha, and K.S. Seo1, “High-Performance Normally-Off GaN MIS-HEMTs With Dual Gate Insulator Employing PEALD SiNx Interfacial Layer and RF-Sputtered HfO2,” CS MANTECH Conference, May 19th - 22nd, 2014, Denver, Colorado, USA.
[44] F.C. Yang, C.Y. Huang, S.K. Yang, J.G. Wu, “Normally-off AlGaN/GaN Metal–Oxide Semiconductor High Electron Mobility Transistors with RF-Sputtered Hafnium Oxide,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2018.
[45] M.S Reddy, W.S. Park, K.S. Im ; J.H. Lee, “Dual-Surface Modification of AlGaN/GaN HEMTs Using TMAH and Piranha Solutions for Enhancing Current and 1/f-Noise Characteristics, ” IEEE Journal of the Electron Devices Society, vol. 6, pp. 791-796, Jun. 2018.