| 研究生: |
李佳憲 Li, Chia-Hsien |
|---|---|
| 論文名稱: |
AISI 201及444不銹鋼之孔蝕敏感性比較研究 A comparison study on pitting corrosion susceptibility of AISI 201 and AISI 444 stainless steels |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | AISI 201 、AISI 304 、孔蝕起始位置 、晶粒大小影響 、硫酸鈉 |
| 外文關鍵詞: | AISI 201, AISI 304, pitting initiationsites, grain size effect, Na2SO4 |
| 相關次數: | 點閱:173 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討市售之201及444 不銹鋼(S.S.)之孔蝕敏感性,並以304 S.S.做為對照組,分別在25、250及2500 ppm Cl-及0.1 M Na2SO4 + 2500 ppm Cl-兩種水溶液中進行孔蝕敏感性的比較。在0.1 M Na2SO4 + 2500 ppm Cl-水溶液中,將原材及固溶熱處理的試片以動電位極化試驗搭配試驗後的表面形貌觀察,來決定臨界孔蝕溫度(CPT),藉此比較晶粒大小對孔蝕敏感性的影響;在25、250及2500 ppm Cl-水溶液中,量測三種原材之動電位循環極化曲線,比較不同材料的Enp,並觀察蝕孔的表面及橫截面形貌,最後探討不同材料之間造成耐孔蝕性差異的原因。
以動電位CPT決定法量測三種材料之CPT,結果顯示,在0.1 M Na2SO4 + 2500 ppm Cl-水溶液中,201、304、444 S.S.原材之CPT分別為36、35、36 oC;經熱處理後CPT分別下降為30、30、28 oC,在0.1 M Na2SO4 + 2500 ppm Cl-水溶液中,三種材料之耐孔蝕性質並無明顯差距,顯示硫酸鈉具有一定的抑制孔蝕效果,從有無添加硫酸鈉之極化曲線比較也能獲得證實。各材料經1050 oC持溫30分鐘的固溶熱處理後的平均晶粒大小上升,因而導致孔蝕敏感性上升,這是由於粗晶材料中的Cr擴散速率比細晶的慢,較少Cr擴散至表面形成鈍化膜,所形成的鈍化膜化學性質較不穩定。從孔蝕起始位置的觀察得知,蝕孔在晶粒內及晶界皆會生成,常常起始於非金屬介在物,像是碳化物或氧化物,將動電位極化試驗後的試片以SEM觀察,在低於CPT之溫度沒有觀察到蝕孔產生,而在高於CPT的情況下,觀察到的蝕孔大小多在10 μm以下。
在25、250及2500 ppm Cl-水溶液中,隨著溶液中添加的氯離子濃度增加,三種材料的孔蝕起始電位Enp與孔蝕保護電位Epp皆明顯下降,顯示孔蝕敏感性上升。2500 ppm Cl-水溶液中,三種材料皆發生孔蝕,蝕孔大小約50 μm;250 ppm Cl-水溶液中,只有201 S.S.表面有大型蝕孔;25 ppm水溶液中三種材料皆只有10 μm以下的小型蝕孔,顯示氯離子濃度較低時,金屬離子周圍不容易吸引到足夠的氯離子與之反應。250 ppm Cl-水溶液中,444 S.S.之Enp略高於304 S.S.,但十分相近;2500 ppm Cl-水溶液中,304 S.S.之Enp略高於444 S.S.。在25 oC下,2500 ppm Cl-水溶液中,以SEM觀察試驗後的蝕孔橫截面形貌,444 S.S.的蝕孔發展深度最淺,且無向水平方向發展的趨勢,孔蝕敏感性最低;而304 S.S.與201 S.S.在此環境下蝕孔向下發展最深,並有向水平方向發展的趨勢,易產生較大的腐蝕量,。從試驗後表面及橫截面觀察結果顯示,在氯離子水溶液環境中,材料的耐蝕性差異,耐孔蝕性質444 S.S.>304 S.S.>201 S.S.。從化學成分差異進行比較,444 S.S.相較於304 S.S.,因含有1.92 wt %的Mo元素,Mo會在表面附近形成MoO42-,改變鈍化膜的電性,進而排斥侵蝕性陰離子,使鈍化膜更穩定;201 S.S.相對於304 S.S.,含有較高量的Mn,Mn是一種活性較高的元素,容易氧化,且其氧化物結構鬆散,無法有效保護內層,易被環境中的溶液入侵。
In this study, we investigated the pitting corrosion susceptibility of AISI 201 and 444 S.S., took 304 S.S. as the control group. The solution used in this research were 25,250, and 2500 ppm Cl- and 0.1 M Na2SO4 + 2500 ppm Cl- aqueous solution. The determination of the critical pitting temperature (CPT), observation of the pit morphology and the comparison of pitting initiation potential (Enp) are the main means to estimate the pitting corrosion susceptibility.
In 0.1 M Na2SO4 + 2500 ppm Cl- aqueous solution. The CPT of as-received materials of 201, 304 and 444 S.S. are 36, 35 and 36 oC. The CPT of heat treatment samples are 30, 30 and 28 oC. After the heat treatment, the grain size grew. Because the grain growth influence, the passive film on surface contain less Chromium. That leads to the rise of the pitting corrosion susceptibility. With surface observation, we found that is no pit on sample surface below CPT. With temperature higher than CPT, some pits could be found. The magnitude of it were about 10 μm.
In 25, 250, and 2500 ppm chloride solution, the Enp and Epp dropped with chloride content increased. In 2500 ppm chloride content, large pits were found on all three materials. The diameter were about 50 μm. The Enp of 304 S.S. is higher than 444 S.S. In 250 ppm chloride solution, large pits were only found on 201 S.S. The Enp of 304 and 444 S.S were very close. In 25 ppm chloride solution, there are only small and swallow pits on all three materials. The magnitude of them were mostly smaller than 10 μm. From observation of cross section of pit morphology. We found the pits on 201 S.S. and 304 S.S. grew deeper and likely to grow horizontally. While the pits on 444 S.S. are shallow and unlikely to grow horizontally. Over all, in chloride solution, the pitting corrosion resistance 444 S.S.> 304 S.S.>201 S.S.
[1] P. Bala srinivasan, V. Muthupandi, W. Dietzel, V. Sivan, “An assessment of impact strength and corrosion behaviour of Shielded Metal arc Welded Dissimilar Weldments between UNS 31803 and IS 2062 Steels”, J. Mater. and Design. Vol. 27, pp. 182, 2006
[2] J. Horvath, and H. H. Uhlig, “Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels”, J. Electrochem. Soc., Vol. 115, pp. 791, 1968
[3] J. Stewart, and D.E. Williams, “The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions”, Corrosion Science, Vol. 33, pp. 457, 1992
[4] W. Chuaiphan, and L. Srijaroenpramong, “Effect of filler alloy on microstructure, mechanical and corrosion behaviour of Dissimilar weldment between AISI 201 stainless steel and low carbon steel sheets produced by a gas Tungsten arc welding”, Advanced Materials Research, Vol. 581-582, pp. 808, 2012
[5] M. Kemp, A. van Bennekom, F.P.A. Robinson, “Evaluation of the corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels ”, Materials Science and Engineering, Vol. A199, pp. 183, 1995
[6] V. Villaret, F. Deschaux-Beaumea, C. Bordreuila, S. Rouquettea, and C. Chovetb, “Influence of filler wire composition on weld microstructures of a 444 ferritic stainless steel grade”, Journal of Materials Processing Technology, Vol. 213, pp.1538, 2013
[7] C. C. Silva, J. P. S.E. Machado, A. V.C. Sobral-Santiago, H. B. de Sant'Ana, and J. P. Farias, “High-temperature hydrogen sulfide corrosion on the heat-affected zone of the AISI 444 stainless steel caused by Venezuelan heavy petroleum”, Journal of Petroleum Science and Engineering, Vol. 59, pp. 219, 2007
[8] S. S. M. Tavaresa, J. A. de Souza, L. F. G. Herculano, H. F. G. de Abreu, and C. M. de Souza Jr., “Microstructural, magnetic and mechanical property changes in an AISI 444 stainless steel aged in the 560 °C to 800 °C range”, Materials Characterization, Vol. 59, pp. 112, 2008
[9] T. Bellezze, G. Roventi, A. Quaranta and R. Fratesi, “Improvement of pitting corrosion resistance of AISI 444 stainless steel to make it a possible substitute for AISI 304L and 316L in hot natural waters”, Materials and Corrosion, Vol. 59, pp. 727, 2008
[10] C. Bitondo, A. Bossio, T. Monetta, M. Curioni, F. Bellucci, “The effect of annealing on the corrosion behaviour of 444 stainless steel for drinking water applications”, Corrosion Science, Vol. 87, pp. 6, 2014
[11] J. Charles, A. Kosmac, J. Krautschick, J. A. Simon, N. Suutala, and T. Taulavuori, “Materials and Applications Series”, Austenitic Chromium – Manganese stainless steels – A European approah, Vol. 12, pp. 1, 2012
[12] S. G. Wang, C. B. Shen,K. Long, H. Y. Yang, F. H. Wang, and Z. D. Zhang, “Preparation and electrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution”, The Journal of Physical Chemistry B, Vol. 109, pp. 2499, 2005
[13] Vahid Afshari, and Changiz Dehghanian, “Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution”, Corrosion Science, Vol. 51, pp. 1844, 2009
[14] Y. Li, F. Wang, and G. Liu, “Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel”, Corrosion, Vol. 60, pp. 891, 2004
[15] Y. W. Hao, B. Deng, C. Zhong, Y. M. Jiang, and J. Li,. “Effect of Surface Mechanical Attrition Treatment on Corrosion Behavior of 316 Stainless Steel”, Journal of Iron and Steel Research, International., Vol. 16, pp.68, 2009
[16] P. Marcus, J. Oudar, “Corrosion mechanism in theory and practice”, 1995
[17] G. S. Frankel, “Pitting Corrosion of Metals A Review of the Critical Factors”, Journal of the Electrochemical Society, Vol. 145, pp. 2186, 1998
[18] H. H. Strehblow, “Nucleation and repassivation of corrosion pits for pitting on Iron and Nickel”, Werkstoffe und Korrosion, Vol. 27, pp. 792, 1976
[19] T. P. Hoar, D. C. Mears , and G. P. R. Othwell, “The relationships between anodic passivity, Brightening and Pitting”, Corrosion Science, Vol. 5, pp. 279, 1965
[20] T. P. Hoar, and W. R. Jacob, “Breakdown of passivity of stainless steelby halide ions”, Nature, Vol. 216, pp. 1299, 1967
[21] H. H. Uhlig, “Adsorbed and reaction-product films on metals”, Journal of the Electrochemical Society, Vol. 97, pp. 215C, 1950
[22] N. Sato, “A theory for breakdown of anodic oxide films on metals”, Electrochimica Acta, Vol. 16, pp. 1683, 1971
[23] N. Sato, K. Kudo , and T. Noda, “The anodic oxide film on Iron in neutral solution”, Electrochimica Acta, Vol. 16, pp. 1971, 1909
[24] M. A. Streicher, “Pitting corrosion of 18Cr-8Ni stainless steel”, J. Electrochem. Soc., Vol. 103, pp. 375, 1956
[25] G. S. Eklund, “Initiation of pitting at sulfide inclusions in stainless steel”, Journal of the Electrochemical Society, Vol. 121, pp. 467, 1974
[26] N. Pessall, and C. Liu, “Determination of critical Pitting potentials of stainless steels in aqueous chloride environments”, Electrochimica Acta, Vol. 16, pp. 1987, 1971
[27] D. E. Williams, J. Stewartt ,and P. H. Balkwill, “The nucleation, growth and stability of micropits in stainless steel”, Corrosion Science, Vol. 36, pp. 1213, 1994
[28] P. C. Pistoriust, and G. T. Burstein, “Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate”, Corrosion Science, Vol. 33, pp. 1885, 1992
[29] P. C. Pistoriust, and G. T. Burstein, “Metastable pitting corrosion of stainless steel and the transition to stablity”, Philos. Trans. R. Soc. Lond., A, Vol. 341, pp. 531, 1992
[30] G.O. Ilevbare, G.T. Burstein, “The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions”, Corrosion Science, Vol. 45, pp. 1545, 2003
[31] D. Landolt, “Corrosion and surface chemistry of metals”, CRC. Prees., pp. 544, 2007
[32] M. G. Fontana, “Corrosion engineering”, New York:McGraw-Hill, pp. 67, 1986
[33] R. J. Brigham, and E. W. Tozer, “Temperature as a pitting criterion”, Corrosion, Vol. 29, pp. 33, 1973
[34] R. J. Brigham, and E. W. Tozer, “Effect of alloying additions on the pitting resisitance of 18% Cr austenitic stainless steel”, Corrosion, Vol. 30, pp. 161, 1974
[35] M. H. Moayed, N. J. Laycock, and R. C. Newman, “Dependence of the Critical Pitting Temperature on surface roughness”, Corrosion Science ,Vol. 45, pp. 1203, 2003
[36] P. E. Arnvig, and A. D. Bisgard, “Determining the potential independent critical pitting temperature cpt by a potentiostatic method using the avesta cell”, Paper 437 presented at Corrosion '96, NACE, 1996
[37] Z. Szklarska-Smialowska, “Pitting Corrosion of Metals”, NACE, Houston, TX, 1986
[38] K. Hashimoto, K. Asami, and K. Teramoto, “An x-ray photo-electron spectroscopic study on the role of molybdenum in increasing the corrosion resistance of ferritic stainless steels in HC1” Corrosion Science, Vol. 19, pp. 3, 1979
[39] H. Ogawa, H. Omata, I. Itoh, and H. Okada, “Auger electron spectroscopic and electrochemical analysis of the effect of alloying elements on the passivation behavior of stainless steels”, Corrosion, Vol. 34, pp. 52, 1978
[40] R. J. Brigham, and E.W.Tozer, “Localized corrosion resisitance of Mn-substituted austenitic stainless steel effect of Molybdenum and chromium”, Corrosion, Vol. 32, pp. 274, 1976
[41] 林漢塗,「銅對18-8不銹鋼之耐蝕性質影響研究」,,國立成功大學材料科學及工程研究所碩士論文,1990
[42] George F. Vander Voort, “ASM Handbook Vol. 9 Metallography and Microstructures”, ASM International, 2004
[43] M.H. Moayed , N.J. Laycock b, and R.C. Newman, “Dependence of the critical pitting temperature on surface roughness”, Corrosion Science, Vol. 45, pp. 1203, 2003
[44] ASTM. (2004). “Standard Test Methods for Determining Average Grain Size”, D112-96, West Conshohocken, Pa
[45] A. Abbasi Aghuy, M. Zakeri, M.H. Moayed ,and M. Mazinani, “Effect of grain size on pitting corrosion of 304L austenitic stainless steel”, Corrosion Science, Vol. 94, pp. 368, 2015
[46] H. P. Leckie and H. H. Uhlig, “Environmental factors affecting the critical potential for pitting in 18-8 Stainless Steel”, J. Electrochem. Soc., Vol. 113, pp. 1262, 1966
[47] G. Wranglen, “Pitting and sulphide inclusions in steel”, Corrosion Science, Vol. 14, pp. 331, 1974
[48] K.D. Ralston, and N. Birbilis, “Effect of grain size on corrosion: A review”, Corrosion, Vol. 66, pp. 0750051-1, 2010
[49] M.H. Moayed, and R.C. Newman “Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature”, Corrosion Science , Vol. 48, pp. 1004, 2006
[50] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, “Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions”, Corrosion Science, Vol. 50, pp. 1796, 2008
[51] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, “Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions”, Corrosion Science, Vol. 50, pp. 1796, 2008
[52] Park, KyungJin, and Kwon, HyukSang, “Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys”, Electrochimica Acta, Vol. 55, pp.3421, 2010
[53] 机薇如,「硫酸根離子對420麻田散鐵不銹鋼於氯化鈉水溶液中之孔蝕行為影響研究」,國立成功大學材料科學及工程研究所碩士論文,2010