研究生: |
鄭雅憶 Cheng, Ya-yi |
---|---|
論文名稱: |
矽與鐵矽奈米粒子之製備及特性研究 Preparation and Characterization of Si and FeSi Nanoparticles |
指導教授: |
陳東煌
Chen, Dong-Hwang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 研磨技術 、矽奈米粒子 、鐵矽奈米粒子 |
外文關鍵詞: | milling, Si nanoparticles, FeSi nanoparticles |
相關次數: | 點閱:43 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關以濕式研磨法製備研磨矽奈米粒子,並於熱烈解系統中對矽奈米粒子進行熱處理,以及同樣使用熱裂解系統,將研磨矽奈米粒子作為晶種,製備出兼具磁性與光學特性之鐵矽奈米粒子之研究,內容包含熱處理前後矽奈米粒子及鐵矽奈米粒子之粒徑、結構、光學、磁學等性質的探討。
利用酒精與研磨鋯珠,在適當研磨條件及離心後可得微小、表面不規則狀之矽奈米粒子,平均粒徑為4.2±1.6 nm;經過熱處理之後,熱處理矽奈米粒子之平均粒徑會增至10.2±4.4 nm並呈球狀結構,兩者皆具有高度分散性;經高解析晶格(HRTEM)、XRD、Raman分析可得研磨矽奈米粒子呈現體心立方結構,但受到研磨應力及粒徑過於微小之影響,結晶性並不強烈;然而經熱處理後,粒子與粒子結合,並使矽原子重新排列,結晶性有明顯增加之趨勢且形成多晶結構;透過ESCA與FTIR分析亦可得知,矽奈米粒子在熱處理前後,其矽-矽鍵能值僅稍微增加,顯示表面氧化比例稍為提升但大致維持矽-矽之鍵結,兩者表面都具有二氧化矽及醇類溶劑分子薄層,如此可避免粒子向中心繼續氧化,也證明表面未殘留任何保護劑;在光學性質方面,利用PL分析得知研磨矽奈米粒子與熱處理矽奈米粒子皆可在不同波長光源的激發下,激發出不同放光波長之特性光譜,螢光顯微鏡之照片及粉末PL分析亦可相互佐證之;此外,UV-vis光譜亦顯示兩者具有相同之吸收特性峰。
利用熱裂解系統可成功將研磨矽奈米粒子及五羰鐵結合,製備出鐵矽奈米粒子;從穿透式顯微鏡照片(TEM)可知其粒子呈現立方體型態,但顏色深淺及組成不均,EDS結果則顯示顏色均勻之粒子鐵與矽之組成大致為1:1,顏色較深之粒子則含有較高量的鐵元素;儘管組成比例並不統一,但單顆粒子同時含有矽與鐵兩種元素,初步說明鐵矽奈米粒子之形成;進行多種結構與表面分析並探討所有可能之鍵結、結構及表面元素後,推測鐵矽奈米粒子可能以FeSi2之結構形成,並同時包含未重組完成的矽及鐵之結構;利用PL分析得知鐵矽奈米粒子確實保留矽之放光特性,並在300 nm激發光源下,於波長388 nm處有一最強放光特性峰,但整體發光效益不及研磨矽奈米粒子之結果;最後,利用超導量子干涉磁化儀(SQUID)量測其飽和磁化量(Ms)、殘留磁化量(Mr)、與矯頑磁力(Hc),發現磁滯現象並不明顯而幾乎呈超順磁性。
This thesis concerns the preparation of milled Si nanoparticles, heat-treated Si nanoparticles, and FeSi nanoparticles which own magnetic and optical properties simultaneously via thermal decomposition method. The effects of preparation conditions on the particle size, structure, composition, optical and magnetic properties were investigated.
Milled Si nanoparticles were prepared by grinding with the beads of yttrium stabilized ZrO2 in enthanol and separated by the centrifuge. In order to estimate the effects on the pure Si nanoparticles from the thermal decomposition system, milled Si nanoparticles were heat-treated in the solution of dioctyl ether, stabilizers oleic acid and oleylamine. It was found that milled Si nanaparticles had irregular shape with a diameter of 4.2±1.6 nm and that the heat-treated ones were spherical with a larger diameter of 10.2±4.4 nm. Both they preserved the great monodispersion. Their structure, composition, morphology were characterized by the analyses of HRTEM, XRD and Raman scattering. These results revealed that the milled Si nanoparticles had the body-centered cubic structure, not only diamond structure like the bulk Si anymore. The stress from milling and the small size would reduce their crystallinity. After the heat treatment, the atoms of the milled Si nanoparticle would rearrange in the interior, and even combine with each other to form the better poly-crystalline Si nanopartcles. The ESCA analysis of milled Si and heat-treated Si nanoparticles exhibited the almost similar Si-Si binding energy despite a little increase from heat-treated one. The FTIR results indicated that there was a film consisted of SiO2 and ethanol molecules on the surface to prevent it from oxidation, and also proved there were not any stabilizers left on the surface of heat-treated Si nanoparticles. Moreover, when giving the specific wavelength of excitation, the specific PL spectra for the milled Si nanoparticles could be observed, so did heat-treated Si nanoparticles. The optical images and properties were also revealed from optical microscopy, the powder-PL analysis and the UV-vis spectrometer.
FeSi nanoparticles were synthesized via thermal decomposition of iron pentacarbonyl in the solution of dioctyl ether, stabilizers oleic acid and oleylamine. The TEM images showed that FeSi nanoparticles had cubic shape, but it seemed that the composition was not uniform. According to the EDS results, the Fe:Si ratio of gray-uniform nanopaiticles was almost 1:1, and blacker FeSi nanoparticles contained more Fe atoms. Although FeSi didn’t have uniform structure, it still could be proved that the incorporation of Fe and Si existed in a single nanoparticle. All possible structure, lattice, binding, morphology, surface condition would be discussed. These results indicated that perhaps FeSi2 was the main structure of the new products; however, due to incompletely combination and less synthesized time, it might still contain some part of Si and Fe structure. Besides, FeSi nanoparticles preserved the optical properties from Si atoms, but the PL intensity was much lower. The maxima PL peak appeared at 388 nm with the excitation at 300 nm. Their saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured by the SQUID, exhibiting their nearly superparamagnetic behavior.
1. C. N. R. Rao, A. K. Cheetham, J. Mater. Chem., 11, 2887 (2001).
2. 蘇品書 編撰,超微粒子材料技術,臺南:復漢 (1989)。
3. 莊萬發 編撰,超微粒子理論應用,臺南:復漢 (1995)。
4. R. P. Feynman, A lecture in engineering and science, In California Institute of Technology February edn (1960).
5. 張志焜、崔作林,納米技術與納米材料,北京:國防工業 (2000)。
6. 張立德 編撰,納米材料,臺北:化學工業 (2000)。
7. 張立德、牟季美 編撰,納米材料和納米結構,臺北:科學 (2000)。
8. “A Snapshot of Nanotechnology”, National Cancer Institude, Sep. (2008)
9. 陳光華,鄧金祥 編著,奈米薄膜技術與應用,臺北:五南 (2005)。
10. 徐國財、張立德 編著,奈米複合材料,臺北:五南 (2004)。
11. 王崇人,“淺談奈米科學”,科學發展,354 期 (2002)。
12. 工研院工業材料研究所,材料奈米科技專刊,臺北:經濟部技術處 (2001)。
13. E. Roduner, Chem. Soc. Rev., 35, 583 (2006).
14. G. Schmid, Nanoscale Materials in Chemistry, New York: Wiley (2001).
15. 尹邦耀,奈米時代,臺北:五南 (2002)。
16. M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi, T. Pal, J. Nanopart. Res., 6, 53 (2004).
17. R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, M. J. Natan, J. Phys. Chem., 100, 718 (1996).
18. A. M. Michaels, J. Jiang, L. Brus, J. Phys. Chem.B, 104, 11965 (2000).
19. N. Felidj, J. Aubard, G. Levi, J. R. Krenn,A. Hohenau, G. Schider, A. Leitner, F. R. Aussenegg, Appl. Phys. Lett., 82, 3095 (2003).
20. L. H. Lu, H. J. Zhang, G. Y. Sun, S. Q. Xi, H. S. Wang, X. L. Li, X. Wang, B. Zhao, Langmuir, 19, 9490 (2003).
21. Z. H. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N. B. Wong, S. T. Lee, Adv. Mater., 21, 661 (2009).
22. S. N. Alamri, A. W. Brinkman, J. Phys. D: Appl. Phys., 33, L1 (2000).
23. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat. Biotechnol., 22, 969 (2004).
24. S. K. Haram, B. M. Quinn, A. J. Bard, J. Am. Chem. Soc., 123, 8860
(2001).
25. S. G. Hickey, D. J. Riley, E. J. Tull, J. Phys. Chem.B, 104, 7623 (2000).
26. W. J. Parak, D. Gerion, D. Zanchet, A. S. Woerz, T. Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E. Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi, A. P. Alivisatos, Chem. Mater., 14, 2113 (2002).
27. 郭清癸、黃俊傑、牟中原,“金屬奈米粒子的製造”,物理雙月刊,23,6,614 (2006)。
28. K. J. Klabinde, Nanoscale materials in Chemistry, John Wiley & Sons (2004).
29. M. Dippel, A. Maier,V. Gimple, H. Wider, W. E. Evenson, R. L. Rasera, G. Schatz1, Phys. Rev. Lett., 87, 9, 095505 (2001).
30. S . L. Che, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki, N. Mizutani, J. Mater. Sci., 34, 1313 (1999).
31. 吳國卿、董玉蘭,“奈米粒子材料的觸媒性質”,化工資訊月刊,13(5),42 (1999).
32. 張立德,奈米材料科學,湖南科學技術出版社,1998。
33. K. Nagaveni, A. Gayen, G. N. Subbannab, M. S. Hegde, J. Mater. Chem., 12, 3 147 (2002).
34. 史宗淮, “微粉製程技術簡介”, 化工, 42(6), 28 (1995)。
35. 林景仁,賴宏仁,“奈米材料技術與發展趨勢”,工業材料,153,95 (1999)。
36. 馬遠榮,奈米科技,臺北:商周 (2002)。
37. 林鴻明,“奈米材料未來的發展趨勢”,科技發展政策報導,9,648 (2002)。
38. E. Graffet, M. Tchikart, O. Elkedim, and R. Rahouadj, Mater. Charact., 36, 185 (1996).
39. A. Amulyavichus, A. Daugvila, R. Davidonis, C. Sipavichus, Fiz. Met. Metalloved., 85, 111 (1998).
40. J. R. Balckborrow, D. Young, Metal vapor synthesis, New York (1979).
41. Napper, D. H. Polymeric Stabilization of Colloidal Dispersions, Academic Press: London (1984).
42. T. Sugimoto, Adv. Colloid Interface Sci., 28, 65 (1987).
43. 高濂、孫靜、劉陽橋 編著,奈米粉體的分散與表面改性,臺北: 五南 (2005)。
44. S. Ayyappan, R. S. Gopalan, G. N. Subbanna, C. N. R. Rao, J. Mater. Res., 12, 398 (1997).
45. J. Lee, T. Isobe, and M. Senna, J. Colloid Interface Sci., 177, 490 (1996).
46. N. Ishizuki, N. Torigoe, K. Esumi, K. Meguro, Colloids and Surfaces, 55, 15 (1991).
47. K. Osseo-Asare, F. J. Arriagada, Ceram. Trans., 12, 3 (1990).
48. K. Osseo-Asare, F. J. Arriagada, Colloids and Surfaces, 50, 321 (1990).
49. B. Zhou, R. Balee, R. Groenendaal, Nanotechnology Law & Business, 2, 3 (2005).
50. M. T. Reetz, M. Winter, B. Tesche, Chem. Commun., 6, 535 (1997).
51. M. Haruta, M. Date, Appl. Catal. A, 222, 427 (2001).
52. 柯揚船,皮特斯壯,聚合物-無機奈米複合材料,臺北:五南 (2004)。
53. 江宜蓁,以有機金屬法合成兼具磁性與光學特性之金屬奈米複合粒子,國立成功大學化學工程研究所博士論文 (2008)。
54. K. B. Blodgett, J. Am. Chem. Soc., 56, 495 (1934).
55. R. K. Iler, J. Colloid Interface Sci., 21, 569 (1966).
56. 吳建成,陳東煌,“逐層自主裝奈米結構多層膜”,化工資訊與商情3月,64 (2005)。
57. R. H. Morriss, L. F. Collins, J. Chem. Phys. 41, 3357 (1964).
58. J. Zhu, Y. C. Wang, L. Q. Huang, Y. M. Lu, Phys. Lett. A, 323, 455 (2004).
59. P. Mulvaney, M. Giersig, A. Henglein, J. Phys.Chem., 97, 7061 (1993).
60. A. Henglein, M. Giersig, J. Phys.Chem., 98, 6931 (1994).
61. A. Henglein, P. Mulvaney, A. Holzwarth, T. E. Sosebee, A. Fojtik, Ber. Bunsenges. Phys. Chem., 96, 754 (1992).
62. A. Henglein, A. Holzwarth, P. Mulvaney, J. Phys.Chem., 96, 8700 (1992).
63. A. Henglein, P. Mulvaney, A. Holzwarth, J. Phys.Chem., 96, 2411 (1992).
64. E. E. Carpenter, C. Sangregorio, C. J. O’Connor, IEEE Trans. Magn., 35, 3496 (1999).
65. D. Zhang, G. Glavee, K. J. Klabunde, G. C. Hadjipanayis, C. M. Sorensen, High Temp. Mater. Sci., 36, 93 (1997).
66. 劉雪寧、楊治中, “奈米複合材料的設計與應用”,化學通報,62,99124。
67. L. Brus, J. Phys. Chem., 90, 2555 (1986).
68. S. Furakawa, T. Miyasato, Phys. Rev. B, 38, 5726 (1988).
69. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett., 56, 2379 (1990).
70. T. S. Iwayamat, M. Ohshimat, T. Niimit, S. Nakaot, K. Saitoh, T. Fujitas, N. Itoh, J. Phys.: Condens. Matter., 5, L375 (1993).
71. U. Röthlusberger, W. Andreoni, M. Parrinello, Phys. Rev. Lett., 72, 665 (1994).
72. A. Bahel, M. V. Ramakrishna, Phys. Rev. B, 51, 13849 (1995).
73. J. S. Blakemore, Solid State Physics, Cambridge University Press, Cambridge (1988).
74. L.Pavesi, L. Dal Negro. C. Mazzoleni, G. Franzò, F. Priolo, Nature, 408, 440 (2000).
75. S. M. Prokes, O. J. Glembocki,V. M. Bermudez, Phys. Rev. B., 45, 13788 (1992).
76. P. M. Fauchet, L. Tsybeskov, C. Peng, SPIE, 2131, 155 (1994).
77. A. Reindl, S. Aldabergenova, E. Altin, G. Frank, W. Peukert, Phys. Stat. Sol. (a), 204, 7, 2329 (2007).
78. J. H. Warner, A. Hoshino, K. Yamamoto, R. D. Tilley, Angew. Chem. Int. Ed., 44, 4550 (2005).
79. A. Chowdhury, S. Mukhopadhyay, S. Ray, Solar Energy Materials & Solar Cells, 92, 385 (2008)
80. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L Wagner, L Mitas, Appl. Phys. Lett., 80, 841 (2002).
81. S. Sato, M. T. Swihart, Chem. Mater. 18, 4083 (2006).
82. X. Zhang, D. Neiner, S. Wang, A. Y. Louie, S. M. Kauzlarich, Nanotechnology, 18, 095601 (2007).
83. J. Choi, N. S. Wang, V. Reipa, Bioconjugate Chem., 19, 680 (2008).
84. W. C. Chan, S. Nie, Science, 281, 2016 (1998).
85. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science, 281, 2013 (1998).
86. M. Green, Angew. Chem., 116, 4221 (2004).
87. M. Green, Angew. Chem. Int. Ed., 43, 4129 (2004).
88. A. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Tradway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol., 21, 41 (2003).
89. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science, 298, 1759 (2002).
90. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, Science, 300, 1434 (2003).
91. D. K. Nagesha, M. A. Whitehead, J. L. Coffer, Adv. Mater., 17, 921 (2005).
92. L. T. Canham, C. L. Reeves, J. P. Newey, M. R. Houlton, T. I. Cox, J. M. Buriak, M. P. Stewart, Adv. Mater., 11, 1505 (1999).
93. J. C. Su, S. Y. Liang, W. L. Liu, T. C. Jan, J. Manuf. Sci. Eng, 126, 779 (2004).
94. 陳仁英,“奈米級粉體之研磨及其分散技術之探討”, 工業材料雜誌,5月 (2002)。
95. 陳成家,工業材料雜誌,237期,83,(2006)。
96. M. Inkyo, Y. Tokunaga, T. Tahara, T. Iwaki, F. Iskandar, C. J. Hogan Jr., K. Okuyama, Ind. Eng. Chem. Res., 47, 2597 (2008).
97. 謝嘉民、賴一凡、林永昌、枋志堯,“光激發螢光量測的原理、架構及應用”,奈米通訊,12,2,28 (2005)。
98. J. H. Simmons, K. S. Potter, Optical Materials, San Diego: Academic Press (2000).
99. A. H. Kitai, Solid State Luminescence, New York: Chapman & Hall (1993).
100. K. D. Mielenz, Optical Radiation Measurements, New York:Academic Press (1982).
101. 龔吉合,材料科學導論,臺中:滄海 (1998)。
102. R. H. Kodama, J. Magn. Magn. Mater., 200, 359 (1999).
103. I. M. L. Billas, A.Châtelain, W. A. de Heer, Science, 265, 1682 (1994).
104. I. M. L. Billas, A.Châtelain, W. A. de Heer, J. Magn. Magn. Mater.,168, 64 (1997).
105. A. J. Freeman, C. L. Fu, S. Ohnishi, M. Weinert, in: R. Feder (ed.), Polarized Electrons in Surface Physics, World Scientific, Singapore, 3 (1985).
106. 馬振基,奈米材料科技—原理與應用,臺北:全華 (2004)。
107. 張正武,FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文 (2004)。
108. L. C. Cullity, Introduction to Magnetic Materials, California: Addison-Wesley (1972).
109. C. M. Sorensen, Magnetism. In: Klabunde, K. J., Nanoscale Materials in Chemistry., New York: Wiley Interscience, 169 (2001).
110. J. Frenkel, J. Dorfman, Nature, London 126, 274 (1930).
111. N. Louis, Compt. Rend., 228, 664 (1949).
112. 陳文照,曾春風,游信和 譯,材料科學與工程導論,臺北:高立(2002)。
113. B. D. Cullity, Introduction to magnetic materials. California:Addison-Wesley (1972).
114. 張煦,李學養 譯,磁性物理學,臺北:聯經 (1982)。
115. A. Reindl, W. Peukert, J. Colloid Interface Sci., 325, 173 (2008)
116. I. Abdulhalimm, R. Beserman, R. Weil, Phys. Rev. B, 39, 2, 1081 (1989).
117. C. Meiera, S. Luttjohanna, V. G. Kravetsa, H. Nienhausa, A. Lorkea, H. Wiggers, Physica E, 32, 155 (2006).
118. H. S. Chen, J. J. Chiu, T. P. Perng, Mater.Phys.Mech., 4, 62(2001).
119. Y. Zhu, L. D. Zhang, J. Phys.: Condens. Matter, 11, L491 (1999).
120. D. Brion, Appl. Surf. Sci., 5, 133 (1980).
121. C. D. Wanger, J. F. Moulder, L. E. Davis, W. M. Riggs, Handbook of X-ray photoelectron spectroscopy, Perking-Elmer Corporation (1995).
122. X. Gao, D. Qi, S. C. Tan, A. T. S. Wee, X. Yu, H. O. Moser, J. Electron Spectrsc. Relat. Phenom., 151, 199 (2006).
123. P. Nyhus, S. L. Cooper, Z. Fisk, Phys. Rev. B, 51, R15 626 (1995).