簡易檢索 / 詳目顯示

研究生: 葛增平
Ko, Tseng-Ping
論文名稱: 懷孕期間抗膽鹼負載與子代自閉症譜系障礙風險之關聯性研究
Association between anticholinergic burden during pregnancy and the risk of autism spectrum disorder in offspring
指導教授: 賴嘉鎮
Lai, Chia-Cheng
共同指導教授: 陳品豪
Chen, Pin-Hao
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 180
中文關鍵詞: 抗膽鹼負載自閉症孕婦
外文關鍵詞: Anticholinergic burden, autism, pregnancy
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景
    自閉症譜系障礙自2008年至2018年,在東亞地區盛行率為0.51%。過去十年間,自閉症譜系障礙之全球盛行率劇增。截至2023年,台灣有19,790位自閉症譜系障礙患者。自閉症譜系障礙之明確病因仍未知,然目前已知其遺傳力約有80%,且基因表現可能受外在環境因素干擾。造成自閉症譜系障礙之風險因子包含懷孕期間母體因素、毒藥物及環境暴露、母體感染及父母高齡等多項原因。過去病理解剖發現,自閉症譜系障礙患者大腦中蕈毒鹼受體顯著減少;另有多項隨機對照試驗探討膽鹼脂酶抑制劑對於自閉症譜系障礙症狀之療效,顯示膽鹼系統不足與自閉症譜系障礙之關聯。先前已有探索性試驗發現孕期暴露膽鹼受體阻斷劑與自閉症譜系障礙之關聯,然目前未有孕期抗膽鹼負載與子代自閉症譜系障礙關聯性之研究。

    研究目的
    探討懷孕期間抗膽鹼負載與自閉症譜系障礙、廣泛性發展障礙、神經發展疾患及不良出生結果的風險之關聯。

    研究方法
    本研究進行全國性的回溯性世代研究。利用婦幼主題式資料庫、台灣健保資料庫、出生通報檔,納入於2004至2020年間單胞胎妊娠的孕婦及其子代,並排除妊娠年齡小於15歲或大於50歲的孕婦及性別登記異常之孕婦,亦排除缺乏胎兒妊娠周數及出生體重資訊的母子對,做為本研究族群。我們使用抗膽鹼負載量表 (Anticholinergic cognitive burden scale, ACB) 進行孕婦在第二妊娠期與第三妊娠期,用藥抗膽鹼負載之測量。研究結果是子代的神經發育障礙,從出生開始追踪,直到結果發生、子代年滿18歲、死亡或資料庫的時間終點,以先到者為準。我們應用傾向分數進行細項分組加權 (propensity score with fine stratification weighting) 控制可測量之干擾因子,以獲得了兩個協變量平衡的比較組。我們比較了在孕期間暴露於母親ACB分數為至少3分的兒童與暴露於ACB分數小於3分的兒童的風險差異。利用Cox比例風險迴歸 (Cox proportional hazards models) 進行神經發育障礙結果之風險比計算及其95%信賴區間,以評估妊娠期抗膽鹼負載與子代的神經發育障礙之間的關聯。此外我們由研究族群中選擇至少有兩個子代的母親,進行了手足對照分析,以檢驗潛在的遺傳或環境因素干擾效應。

    研究結果與討論
    本研究共納入2,939,670對母子,其中1,935,645對被用於手足對照分析。在主分析中我們發現母親的孕期ACB分數為至少3分與其子代患自閉症譜系障礙的風險增加顯著相關;與ACB得分小於3的母親相比,其校正後的風險比為1.11 (95% CI,1.09-1.12)。然而此關聯性在手足對照分析中並未觀察到,校正後的風險比為0.66 (95% CI,0.33-1.23),顯示主分析中觀察到的結果可能受基因與環境因素等干擾因子所影響。

    結論
    根據我們的研究結果,懷孕期間的抗膽鹼負載與子代自閉症譜系障礙的風險之間似乎沒有因果關係。儘管主分析最初表明母親孕期抗膽鹼負載較高的子代患自閉症譜系障礙的風險較高,但隨後的敏感性分析並不支持此關聯性。然而考慮到抗膽鹼負載較高的孕婦,其子代自閉症譜系障礙發病率仍相對較高,臨床醫師應更加關注並密切監測這群孕婦。

    The prevalence of autism spectrum disorder (ASD) has significantly increased globally, including in Taiwan, over the last decade. Studies suggest a relationship between decreased cholinergic status in the brain and ASD, and an association between medications affecting the cholinergic system prenatally and ASD risk in children. Therefore, we conducted a population-based retrospective cohort study to investigate the association between anticholinergic burden during pregnancy and ASD risk in offspring using data from three health databases in Taiwan, including mothers with singleton pregnancies from 2004 to 2020. We assessed anticholinergic burden during the second and third trimesters using the Anticholinergic Cognitive Burden scale and followed adverse neurodevelopmental outcomes of children, including ASD. A propensity score with fine stratification weighting approach was used to control for covariates. Among 2,939,670 mother-child pairs, mothers with ACB scores of 3 or higher were associated with increased ASD risk in offspring (aHR 1.11, 95% CI 1.09-1.12). However, this association was not observed in the subsequent sibling control analysis (aHR 0.66, 95% CI 0.33-1.23). We concluded that anticholinergic burden during pregnancy is not causally linked to a higher ASD risk in offspring. The observed association is potentially influenced by genetic or environmental factors.

    摘要ii ABSTRACTiv 誌謝vii LIST OF TABLESx LIST OF FIGURESxii LIST OF ABBREVIATIONSxiii PART 1: THESIS1 1.BACKGROUND AND RATIONALE1 1.1.Autism spectrum disorder1 1.1.1.Epidemiology2 1.1.2.Pathogenesis3 1.1.3.Cholinergic deficiency in autism spectrum disorder5 1.2.Scales for anticholinergic burden measurements8 1.3.Literature review13 1.4.Research gaps16 1.4.1.Association between prenatal exposure to medications directly affecting cholinergic systems and ASD in offspring16 1.4.2.The relationship between maternal anticholinergic burden during pregnancy and the occurrence of ASD16 2.RESEARCH QUESTIONS AND AIMS17 2.1.Research questions17 2.2.Aims and objectives17 3.STUDY HYPOTHESIS18 4.RESEARCH METHOD19 4.1.Study design19 4.2.Data sources19 4.3.Study population21 4.4.Study period22 4.5.Exposure definitions and anticholinergic burden measurement23 4.6.Outcomes definitions25 4.7.Covariates adjustment26 4.8.Statistical analysis28 4.8.1.Descriptive statistics28 4.8.2.Main analysis28 4.8.3.Sensitivity analysis29 5.RESULTS33 5.1.Cohort identification33 5.2.Baseline characteristics34 5.3.Results of the main analysis45 5.4.Results of the sensitivity analysis50 6.DISCUSSION77 6.1.Main findings77 6.2.Differences from the sensitivity analysis81 6.3.Clinical relevance86 6.4.Strengths and limitations88 7.CONCLUSION90 PART 2: CLINICAL SERVICE 臨床藥事服務91 1.背景與服務源起91 2.目的與方法94 3.結果95 4.討論103 5.結語107 References109 Appendices116

    1. American Psychiatric Association. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. 5th ed. Washington, DC2013.
    2. Zwaigenbaum L, Penner M. Autism spectrum disorder: advances in diagnosis and evaluation. BMJ. 2018;361:k1674. doi: 10.1136/bmj.k1674.
    3. Qiu S, Lu Y, Li Y, Shi J, Cui H, Gu Y, et al. Prevalence of autism spectrum disorder in Asia: A systematic review and meta-analysis. Psychiatry Res. 2020;284:112679. Epub 20191105. doi: 10.1016/j.psychres.2019.112679.
    4. Maenner MJ, Rice CE, Arneson CL, Cunniff C, Schieve LA, Carpenter LA, et al. Potential impact of DSM-5 criteria on autism spectrum disorder prevalence estimates. JAMA Psychiatry. 2014;71(3):292-300. doi: 10.1001/jamapsychiatry.2013.3893.
    5. Maenner MJ, Warren Z, Williams AR, Amoakohene E, Bakian AV, Bilder DA, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill Summ. 2023;72(2):1-14. Epub 20230324. doi: 10.15585/mmwr.ss7202a1.
    6. Chien IC, Lin CH, Chou YJ, Chou P. Prevalence and incidence of autism spectrum disorders among national health insurance enrollees in Taiwan from 1996 to 2005. J Child Neurol. 2011;26(7):830-4. Epub 20110401. doi: 10.1177/0883073810393964.
    7. Chen YL, Chen WJ, Lin KC, Shen LJ, Gau SS. Prevalence of DSM-5 mental disorders in a nationally representative sample of children in Taiwan: methodology and main findings. Epidemiol Psychiatr Sci. 2019;29:e15. Epub 20190130. doi: 10.1017/s2045796018000793.
    8. Wang SY, Cheng YY, Guo HR, Tseng YC. Air Pollution during Pregnancy and Childhood Autism Spectrum Disorder in Taiwan. Int J Environ Res Public Health. 2021;18(18). Epub 20210917. doi: 10.3390/ijerph18189784.
    9. Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry. 2019;76(10):1035-43. doi: 10.1001/jamapsychiatry.2019.1411.
    10. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81-102. Epub 20161221. doi: 10.1146/annurev-publhealth-031816-044318.
    11. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896-910. Epub 20130926. doi: 10.1016/s0140-6736(13)61539-1.
    12. Kim JY, Son MJ, Son CY, Radua J, Eisenhut M, Gressier F, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6(7):590-600. doi: 10.1016/s2215-0366(19)30181-6.
    13. Cheng J, Eskenazi B, Widjaja F, Cordero JF, Hendren RL. Improving autism perinatal risk factors: A systematic review. Med Hypotheses. 2019;127:26-33. Epub 20190323. doi: 10.1016/j.mehy.2019.03.012.
    14. Zhang T, Sidorchuk A, Sevilla-Cermeño L, Vilaplana-Pérez A, Chang Z, Larsson H, et al. Association of Cesarean Delivery With Risk of Neurodevelopmental and Psychiatric Disorders in the Offspring: A Systematic Review and Meta-analysis. JAMA Netw Open. 2019;2(8):e1910236. Epub 20190802. doi: 10.1001/jamanetworkopen.2019.10236.
    15. Zhang T, Brander G, Mantel Ä, Kuja-Halkola R, Stephansson O, Chang Z, et al. Assessment of Cesarean Delivery and Neurodevelopmental and Psychiatric Disorders in the Children of a Population-Based Swedish Birth Cohort. JAMA Netw Open. 2021;4(3):e210837. Epub 20210301. doi: 10.1001/jamanetworkopen.2021.0837.
    16. Doi M, Usui N, Shimada S. Prenatal Environment and Neurodevelopmental Disorders. Front Endocrinol (Lausanne). 2022;13:860110. Epub 20220315. doi: 10.3389/fendo.2022.860110.
    17. Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Frontiers in Neuroscience. 2023;16. doi: 10.3389/fnins.2022.1078586.
    18. Mukaetova-Ladinska EB, Westwood J, Perry EK. Cholinergic Component of Autism Spectrum Disorder. In: Blatt GJ, editor. The Neurochemical Basis of Autism: From Molecules to Minicolumns. Boston, MA: Springer US; 2010. p. 129-61.
    19. Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, et al. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry. 2001;158(7):1058-66. doi: 10.1176/appi.ajp.158.7.1058.
    20. Baruth JM, Wall CA, Patterson MC, Port JD. Proton Magnetic Resonance Spectroscopy as a Probe into the Pathophysiology of Autism Spectrum Disorders (ASD): A Review. Autism Research. 2013;6(2):119-33. doi: https://doi.org/10.1002/aur.1273.
    21. Ford TC, Crewther DP. A Comprehensive Review of the (1)H-MRS Metabolite Spectrum in Autism Spectrum Disorder. Front Mol Neurosci. 2016;9:14. Epub 20160309. doi: 10.3389/fnmol.2016.00014.
    22. Sokol DK, Dunn DW, Edwards-Brown M, Feinberg J. Hydrogen proton magnetic resonance spectroscopy in autism: preliminary evidence of elevated choline/creatine ratio. J Child Neurol. 2002;17(4):245-9. doi: 10.1177/088307380201700401.
    23. Friedman SD, Shaw DW, Artru AA, Dawson G, Petropoulos H, Dager SR. Gray and white matter brain chemistry in young children with autism. Arch Gen Psychiatry. 2006;63(7):786-94. doi: 10.1001/archpsyc.63.7.786.
    24. Ure A, Cox GR, Haslam R, Williams K. Acetylcholinesterase inhibitors for autistic spectrum disorders. Cochrane Database of Systematic Reviews. 2023(6). doi: 10.1002/14651858.CD013851.pub2.
    25. Ghaleiha A, Ghyasvand M, Mohammadi MR, Farokhnia M, Yadegari N, Tabrizi M, et al. Galantamine efficacy and tolerability as an augmentative therapy in autistic children: A randomized, double-blind, placebo-controlled trial. J Psychopharmacol. 2014;28(7):677-85. Epub 20131015. doi: 10.1177/0269881113508830.
    26. Handen BL, Johnson CR, McAuliffe-Bellin S, Murray PJ, Hardan AY. Safety and efficacy of donepezil in children and adolescents with autism: neuropsychological measures. J Child Adolesc Psychopharmacol. 2011;21(1):43-50. doi: 10.1089/cap.2010.0024.
    27. Gabis LV, Ben-Hur R, Shefer S, Jokel A, Shalom DB. Improvement of Language in Children with Autism with Combined Donepezil and Choline Treatment. Journal of Molecular Neuroscience. 2019;69(2):224-34. doi: 10.1007/s12031-019-01351-7.
    28. Al Rihani SB, Deodhar M, Darakjian LI, Dow P, Smith MK, Bikmetov R, et al. Quantifying Anticholinergic Burden and Sedative Load in Older Adults with Polypharmacy: A Systematic Review of Risk Scales and Models. Drugs Aging. 2021;38(11):977-94. Epub 20211109. doi: 10.1007/s40266-021-00895-x.
    29. Boustani M, Campbell N, Munger S, Maidment I, Fox C. Impact of anticholinergics on the aging brain: a review and practical application. Aging Health. 2008;4(3):311-20. doi: 10.2217/1745509x.4.3.311.
    30. Jun K, Hwang S, Ah YM, Suh Y, Lee JY. Development of an Anticholinergic Burden Scale specific for Korean older adults. Geriatr Gerontol Int. 2019;19(7):628-34. Epub 20190429. doi: 10.1111/ggi.13680.
    31. Lisibach A, Benelli V, Ceppi MG, Waldner-Knogler K, Csajka C, Lutters M. Quality of anticholinergic burden scales and their impact on clinical outcomes: a systematic review. European Journal of Clinical Pharmacology. 2021;77(2):147-62. doi: 10.1007/s00228-020-02994-x.
    32. Han L, McCusker J, Cole M, Abrahamowicz M, Primeau F, Elie M. Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Arch Intern Med. 2001;161(8):1099-105. doi: 10.1001/archinte.161.8.1099.
    33. Han L, Agostini JV, Allore HG. Cumulative Anticholinergic Exposure Is Associated with Poor Memory and Executive Function in Older Men. Journal of the American Geriatrics Society. 2008;56(12):2203-10. doi: https://doi.org/10.1111/j.1532-5415.2008.02009.x.
    34. Summers WK. A clinical method of estimating risk of drug induced delirium. Life Sci. 1978;22(17):1511-6. doi: 10.1016/0024-3205(78)90006-1.
    35. Carnahan RM, Lund BC, Perry PJ, Culp KR, Pollock BG. The relationship of an anticholinergic rating scale with serum anticholinergic activity in elderly nursing home residents. Psychopharmacol Bull. 2002;36(4):14-9.
    36. Carnahan RM, Lund BC, Perry PJ, Pollock BG, Culp KR. The Anticholinergic Drug Scale as a measure of drug-related anticholinergic burden: associations with serum anticholinergic activity. J Clin Pharmacol. 2006;46(12):1481-6. doi: 10.1177/0091270006292126.
    37. Ancelin ML, Artero S, Portet F, Dupuy AM, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. Bmj. 2006;332(7539):455-9. Epub 20060201. doi: 10.1136/bmj.38740.439664.DE.
    38. Campbell N, Maidment I, Fox C, Khan B, Boustani M. The 2012 update to the anticholinergic cognitive burden scale. Journal of the American Geriatrics Society. 2013;61(S1):S142-S3.
    39. Rudolph JL, Salow MJ, Angelini MC, McGlinchey RE. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch Intern Med. 2008;168(5):508-13. doi: 10.1001/archinternmed.2007.106.
    40. Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D. Use of drugs with anticholinergic effect and impact on cognition in Parkinson's disease: a cohort study. Journal of Neurology, Neurosurgery & Psychiatry. 2010;81(2):160-5. doi: 10.1136/jnnp.2009.186239.
    41. Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Mahmoud RA, et al. Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc. 2008;56(7):1333-41. Epub 20080526. doi: 10.1111/j.1532-5415.2008.01737.x.
    42. Sittironnarit G, Ames D, Bush AI, Faux N, Flicker L, Foster J, et al. Effects of Anticholinergic Drugs on Cognitive Function in Older Australians: Results from the AIBL Study. Dementia and Geriatric Cognitive Disorders. 2011;31(3):173-8. doi: 10.1159/000325171.
    43. Durán CE, Azermai M, Vander Stichele RH. Systematic review of anticholinergic risk scales in older adults. European Journal of Clinical Pharmacology. 2013;69(7):1485-96. doi: 10.1007/s00228-013-1499-3.
    44. Briet J, Javelot H, Heitzmann E, Weiner L, Lameira C, D'Athis P, et al. The anticholinergic impregnation scale: Towards the elaboration of a scale adapted to prescriptions in French psychiatric settings. Therapie. 2017;72(4):427-37. Epub 20170217. doi: 10.1016/j.therap.2016.12.010.
    45. Bishara D, Harwood D, Sauer J, Taylor DM. Anticholinergic effect on cognition (AEC) of drugs commonly used in older people. Int J Geriatr Psychiatry. 2017;32(6):650-6. Epub 20160609. doi: 10.1002/gps.4507.
    46. Kiesel EK, Hopf YM, Drey M. An anticholinergic burden score for German prescribers: score development. BMC Geriatr. 2018;18(1):239. Epub 20181011. doi: 10.1186/s12877-018-0929-6.
    47. Ah YM, Suh Y, Jun K, Hwang S, Lee JY. Effect of anticholinergic burden on treatment modification, delirium and mortality in newly diagnosed dementia patients starting a cholinesterase inhibitor: A population-based study. Basic Clin Pharmacol Toxicol. 2019;124(6):741-8. Epub 20190110. doi: 10.1111/bcpt.13184.
    48. Sarbacker GB, Espino DV, Wood RC, Oakes SL, Anand D, Markides KA. Total anticholinergic burden and survival within a cohort of elderly Mexican Americans. Geriatr Gerontol Int. 2017;17(10):1515-21. Epub 20161010. doi: 10.1111/ggi.12907.
    49. O'Dwyer M, Maidment ID, Bennett K, Peklar J, Mulryan N, McCallion P, et al. Association of anticholinergic burden with adverse effects in older people with intellectual disabilities: an observational cross-sectional study. Br J Psychiatry. 2016;209(6):504-10. Epub 20160922. doi: 10.1192/bjp.bp.115.173971.
    50. Risacher SL, McDonald BC, Tallman EF, West JD, Farlow MR, Unverzagt FW, et al. Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults. JAMA Neurol. 2016;73(6):721-32. doi: 10.1001/jamaneurol.2016.0580.
    51. Nery RT, Reis AMM. Development of a Brazilian anticholinergic activity drug scale. Einstein (Sao Paulo). 2019;17(2):eAO4435. Epub 20190401. doi: 10.31744/einstein_journal/2019AO4435.
    52. Klamer TT, Wauters M, Azermai M, Durán C, Christiaens T, Elseviers M, et al. A Novel Scale Linking Potency and Dosage to Estimate Anticholinergic Exposure in Older Adults: the Muscarinic Acetylcholinergic Receptor ANTagonist Exposure Scale. Basic Clin Pharmacol Toxicol. 2017;120(6):582-90. Epub 20170116. doi: 10.1111/bcpt.12699.
    53. Rube T, Ecorcheville A, Londos E, Modig S, Johansson P. Development of the Swedish anticholinergic burden scale (Swe-ABS). BMC Geriatrics. 2023;23(1):518. doi: 10.1186/s12877-023-04225-1.
    54. Ploeger A, Raijmakers ME, van der Maas HL, Galis F. The association between autism and errors in early embryogenesis: what is the causal mechanism? Biol Psychiatry. 2010;67(7):602-7. Epub 20091122. doi: 10.1016/j.biopsych.2009.10.010.
    55. Mao C, Lv J, Li H, Chen Y, Wu J, Xu Z. Development of fetal nicotine and muscarinic receptors in utero. Braz J Med Biol Res. 2007;40(5):735-41. doi: 10.1590/s0100-879x2007000500019.
    56. Janecka M, Kodesh A, Levine SZ, Lusskin SI, Viktorin A, Rahman R, et al. Association of Autism Spectrum Disorder With Prenatal Exposure to Medication Affecting Neurotransmitter Systems. JAMA Psychiatry. 2018;75(12):1217-24. doi: 10.1001/jamapsychiatry.2018.2728.
    57. Goasdoué K, Miller SM, Colditz PB, Björkman ST. Review: The blood-brain barrier; protecting the developing fetal brain. Placenta. 2017;54:111-6. Epub 20161206. doi: 10.1016/j.placenta.2016.12.005.
    58. Griffiths SK, Campbell JP. Placental structure, function and drug transfer. Continuing Education in Anaesthesia Critical Care & Pain. 2014;15(2):84-9. doi: 10.1093/bjaceaccp/mku013.
    59. Briggs GGF, Roger K.; Tower, Craig V.; et al. Brigg's Drugs in Pregnancy and Lactation: A Reference Guide to Fetal and Neonatal Risk: Lippincott Williams & Wilkins (LWW); 2021.
    60. Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Recent Developments in Understanding Barrier Mechanisms in the Developing Brain: Drugs and Drug Transporters in Pregnancy, Susceptibility or Protection in the Fetal Brain? Annu Rev Pharmacol Toxicol. 2019;59:487-505. Epub 20180905. doi: 10.1146/annurev-pharmtox-010818-021430.
    61. Beau A-B, Montastruc J-L, Lacroix I, Montastruc F, Hurault-Delarue C, Damase-Michel C. Atropinic burden of drugs during pregnancy and psychological development of children: a cohort study in the EFEMERIS database. British Journal of Clinical Pharmacology. 2016;82(2):478-86. doi: https://doi.org/10.1111/bcp.12978.
    62. Benevent J, Hurault-Delarue C, Araujo M, Montastruc F, Montastruc JL, Lacroix I, et al. Higher intake of medications for digestive disorders in children prenatally exposed to drugs with atropinic properties. Fundam Clin Pharmacol. 2019;33(3):314-26. Epub 20181121. doi: 10.1111/fcp.12428.
    63. Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Kao Yang YH, et al. Taiwan's National Health Insurance Research Database: past and future. Clin Epidemiol. 2019;11:349-58. Epub 20190503. doi: 10.2147/clep.S196293.
    64. 李中一, 陳麗華, 邱孟君, 梁富文, 呂宗學. 台灣「婦幼健康主題式資料庫」之建構與未來應用. 台灣公共衛生雜誌. 2016;35(2):209-20. doi: 10.6288/tjph201635104053.
    65. Huybrechts KF, Bateman BT, Hernández-Díaz S. Use of real-world evidence from healthcare utilization data to evaluate drug safety during pregnancy. Pharmacoepidemiol Drug Saf. 2019;28(7):906-22. Epub 20190510. doi: 10.1002/pds.4789.
    66. Huang W-C, Yang AS-H, Tsai DH-T, Shao S-C, Lin S-J, Lai EC-C. Association between recently raised anticholinergic burden and risk of acute cardiovascular events: nationwide case-case-time-control study. BMJ. 2023;382:e076045. doi: 10.1136/bmj-2023-076045.
    67. Straub L, Hernández-Díaz S, Bateman BT, Wisner KL, Gray KJ, Pennell PB, et al. Association of Antipsychotic Drug Exposure in Pregnancy With Risk of Neurodevelopmental Disorders: A National Birth Cohort Study. JAMA Intern Med. 2022;182(5):522-33. doi: 10.1001/jamainternmed.2022.0375.
    68. Straub L, Bateman BT, Hernandez-Diaz S, York C, Zhu Y, Suarez EA, et al. Validity of claims-based algorithms to identify neurodevelopmental disorders in children. Pharmacoepidemiol Drug Saf. 2021;30(12):1635-42. Epub 20211015. doi: 10.1002/pds.5369.
    69. Modabbernia A, Sandin S, Gross R, Leonard H, Gissler M, Parner ET, et al. Apgar score and risk of autism. Eur J Epidemiol. 2019;34(2):105-14. Epub 20181005. doi: 10.1007/s10654-018-0445-1.
    70. Bateman BT, Mhyre JM, Hernandez-Diaz S, Huybrechts KF, Fischer MA, Creanga AA, et al. Development of a comorbidity index for use in obstetric patients. Obstet Gynecol. 2013;122(5):957-65. doi: 10.1097/AOG.0b013e3182a603bb.
    71. Yu T, Lien YJ, Liang FW, Kuo PL. Parental Socioeconomic Status and Autism Spectrum Disorder in Offspring: A Population-Based Cohort Study in Taiwan. Am J Epidemiol. 2021;190(5):807-16. doi: 10.1093/aje/kwaa241.
    72. Kotelchuck M. An evaluation of the Kessner Adequacy of Prenatal Care Index and a proposed Adequacy of Prenatal Care Utilization Index. Am J Public Health. 1994;84(9):1414-20. doi: 10.2105/ajph.84.9.1414.
    73. Gidziela A, Ahmadzadeh YI, Michelini G, Allegrini AG, Agnew-Blais J, Lau LY, et al. A meta-analysis of genetic effects associated with neurodevelopmental disorders and co-occurring conditions. Nat Hum Behav. 2023;7(4):642-56. Epub 20230220. doi: 10.1038/s41562-023-01530-y.
    74. Wroten M, Yoon S, Andrews P, Yamrom B, Ronemus M, Buja A, et al. Sharing parental genomes by siblings concordant or discordant for autism. Cell Genomics. 2023;3(6):100319. doi: https://doi.org/10.1016/j.xgen.2023.100319.
    75. Sjölander A, Öberg S, Frisell T. Generalizability and effect measure modification in sibling comparison studies. Eur J Epidemiol. 2022;37(5):461-76. Epub 20220321. doi: 10.1007/s10654-022-00844-x.
    76. Frisell T, Öberg S, Kuja-Halkola R, Sjölander A. Sibling comparison designs: bias from non-shared confounders and measurement error. Epidemiology. 2012;23(5):713-20. doi: 10.1097/EDE.0b013e31825fa230.
    77. 內政部戶政司. 05縣市人口年齡結構指標. In: 人口統計資料, editor. 民國112年7月.
    78. 國家發展委員會人口推估查詢系統. 主要年齡別人口數 2022 [updated 2022 August; cited 2024 April 20th]. Available from: https://pop-proj.ndc.gov.tw/Custom_Detail_Statistics_Search.aspx?n=39&_Query=a122117b-1fc9-4ab7-b4bb-85d9a6c8648d.
    79. 衛生福利部國民健康署. 106年國民健康訪問調查成果報告. 2023.
    80. 衛生福利部. 八個全聯會齊推動「長者量六力」 評估健康新趨勢 銀髮族勢在必行. 民國112年5月.
    81. Meng LC, Hsiao FY, Huang ST, Lu WH, Peng LN, Chen LK. Intrinsic Capacity Impairment Patterns and their Associations with Unfavorable Medication Utilization: A Nationwide Population-Based Study of 37,993 Community-Dwelling Older Adults. J Nutr Health Aging. 2022;26(10):918-25. doi: 10.1007/s12603-022-1847-z.
    82. Satava RM. Virtual reality surgical simulator. The first steps. Surg Endosc. 1993;7(3):203-5. doi: 10.1007/bf00594110.
    83. Mobach MP. The virtual pharmacy, 3D becomes reality? Pharm World Sci. 2005;27(4):271-2. doi: 10.1007/s11096-005-2801-y.
    84. Consorti F, Mancuso R, Nocioni M, Piccolo A. Efficacy of virtual patients in medical education: A meta-analysis of randomized studies. Computers & Education. 2012;59(3):1001-8. doi: https://doi.org/10.1016/j.compedu.2012.04.017.
    85. Nuffer W, Smith SM, Trinkley K. Integrating virtual reality to expand the public health role of community pharmacists. J Am Pharm Assoc (2003). 2013;53(2):152-8. doi: 10.1331/JAPhA.2013.12200.
    86. Zlotos L, Power A, Hill D, Chapman P. A Scenario-Based Virtual Patient Program to Support Substance Misuse Education. Am J Pharm Educ. 2016;80(3):48. doi: 10.5688/ajpe80348.
    87. Fox BI, Felkey BG. Virtual Reality and Pharmacy: Opportunities and Challenges. Hosp Pharm. 2017;52(2):160-1. doi: 10.1310/hpj5202-160.
    88. Wragg A, Wade W, Fuller G, Cowan G, Mills P. Assessing the performance of specialist registrars. Clin Med (Lond). 2003;3(2):131-4. doi: 10.7861/clinmedicine.3-2-131.
    89. 顏志和, 陳秀美, 劉媖媚, 吳明芬, 湯念湖, 陳本源. 建立多元化評估方式於實習藥學生之學習成效. 臺灣臨床藥學雜誌. 2012;20(2):81-102.
    90. 陳正榮, 朱紀洪, 于大雄, 孫光煥, 汪志雄. 臨床技能評估工具介紹與應用-臨床技能實作與評量(DOPS). 醫療品質雜誌. 2009;3(1):73-9. doi: 10.30160/jhq.200901.0017.
    91. Yusoff MSB. ABC of Content Validation and Content Validity Index Calculation. Education in Medicine Journal. 2019.
    92. Polit DF, Beck CT. The content validity index: Are you sure you know what's being reported? critique and recommendations. Research in Nursing & Health. 2006;29(5):489-97. doi: https://doi.org/10.1002/nur.20147.
    93. 陳偉德, 蔡長海, 黃崑巖. 臨床醫學教育與Mini-CEX. Journal of Medical Education. 2005;9(4):74-81. doi: 10.6145/jme.200512_9(4).0009.
    94. Polit DF, Beck CT, Owen SV. Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Research in Nursing & Health. 2007;30(4):459-67. doi: https://doi.org/10.1002/nur.20199.
    95. 護理行政委員會暨護理教育委員會. 護理臨床教師教學教案設計指引-DOPS 及 mini-CEX 之護理臨床教學應用中華民國一○二年:[9 p.]. Available from: https://www.twna.org.tw/WebUploadFiles/DocFiles/1698_1021211.pdf.

    無法下載圖示 校內:2029-08-06公開
    校外:2029-08-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE