簡易檢索 / 詳目顯示

研究生: 翁承嘉
Weng, Cheng-Jia
論文名稱: 快震波與Alfvén波對氫及氦離子的加速: 太陽風中氫和氦離子流速差之形成
Fast shock and Alfvén Waves Acceleration of Protons and Heliums:Formation of H+ / He++ Differential Streams in the Solar Wind
指導教授: 李羅權
Lee, Lou-Chuang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 太陽風
外文關鍵詞: Solar wind
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    在1AU處的高速太陽風有以下的重要特性:(1)高速太陽風的速度將近800 km/s;(2)質子(H+)在垂直磁場方向的溫度較平行磁場方向的溫度高;(3)氦離子(He++)的數目約佔高速太陽風組成的5 %;(4)次要離子(含He++ 離子)與質子有著將近相同的熱速度;(5) He++ 和H+ 離子的流速差Vap= 0.1 ~ 0.9 VA0,其中VA0為Alfvén速度,Vap = | Va-Vp |,而Va及Vp分別為He++ 離子及H+離子與磁場平行的流速。傳統的加速機制是以Alfvén波對He++ 離子做共振加速。我們的模擬研究發現,這個Alfvén波的加速機制並不能有效地產生高速太陽風中的速度差Vap = 0.1 ~ 0.9VA0。本研究認為流速差的產生是在太陽附近(r≦5R⊙),先由快震波(fast shock)對H+ 與He++ 的不同加熱及加速所產生。利用快震波的加速機制[Lee and Wu, 2000]及混合粒子碼的數值模擬,結果所得在太陽表面附近之H+ 與He++ 離子的流速差Vap約為0.13VA0~200 km/s,而當此H+ 與He++ 離子行進至地球附近時,Alfvén波之速度逐漸減為VA0 =40~ 60
    km/s,此過程中之H+ 與He++ 離子的流速差在太陽風裡不減少,則在地球軌道附近將變為Vap= (3~5)VA0。我們再利用Alfvén波對粒子的迴旋共振理論,設定共振作用還沒開始前,H+ 與He++ 離子之間具有大於一個Alfvén速度的流速差Vap,且分別假設兩種不同的初始條件,一是模擬開始時就有Alfvén波的存在,另一則研究作用還沒開始前並沒有Alfvén波的存在,由於粒子與質子的平均速度差Vap>1.0VA0,且因電漿體的不穩定而引發出Alfvén波來迴旋共振。模擬結果顯示作用後的流速差
    Vap將下降至小於一個Alfvén速度,此結果可符合太空船Ulysses的觀測Vap = 0.1 ~ 0.9VA0。

    At 1AU, the high-speed solar wind has the following characteristics: (a) the velocity of high-speed solar wind is nearly 800km/s;(b) the temperature of protons in the perpendicular direction to magnetic field is larger than in the parallel direction;(c) the number of the helium ions He++ is approximately 5 of the high-speed solar wind;(d) the secondary ions (including the He++ ions) have a thermal velocity similar to the protons;(e) the differential streaming velocity between the He++ and H+ ions are Vap = 0.1 ~ 0.9 VA0 . Here VA0 is the Alfvén speed, Vap = | Va-Vp |, and Va and Vp are respectively the parallel velocities of the He++ and H+ ions. The traditional acceleration mechanism is the cyclotron resonant acceleration of helium ions by the Alfvén waves. Our simulations show that the Alfvén wave acceleration mechanism cannot effectively produce the differential streaming velocity Vap = 0.1 ~ 0.9 VA0 in the high-speed solar wind. This study proposes that the differential streams are produced nearby the sun ( r≦5R⊙). Firstly fast shocks produce the differently heating and acceleration of H+ and He++ ions. By using fast shock acceleration mechanism [Lee and Wu, 2000] and hybrid code simulations, the differential streaming velocity are approximately Vap = 0.13VA0 ~ 200 km/s near the solar surface. Secondly, the H+ and He++ ions move torward the Earth, and at this time the Alfvén speed in the solar wind is gradually reduced to VA0 = 40 ~ 60 km/s. If the differential streaming velocity maintains the same value, the differential streaming velocity would become Vap = (3~5)VA0 near the Earth's orbit. However, the ion-cyclotron resonant interactions between Alfvén waves and particles during the propagation of solar wind protons and helium ions may reduce the differential streaming velocity. The Alfvén waves may in the solar wind or produced by instabilities when Vap VA0. We simulate cases where the initial differential streaming velocity between H+ and He++ ions are larger than the Alfvén speed. We consider two kinds of initial wave conditions: at t = 0, the Alfvén waves are present for case(A) and no Alfvén wave for case(B). Because the Vp is larger than the Alfvén speed, and plasma instability can lead to the production of the Alfvén waves. After the interaction, the differential streaming velocity between the H+ and He++ ions drop to a value smaller thanthe Alfvén velocity, and the results can conform to the spacecraft Ulysses's observations of Vap =
    0.1 ~ 0.9 VA0 .

    中英文摘要 致謝 本文目錄 圖表目錄 第一章 簡介 18 1.1 太陽風(Solarwind) 18 1.1.1 太陽風的發現 18 1.1.2 太陽風的特性 21 1.1.3 太陽風中的Alfvén波 24 1.2 高速太陽風(high-speed streams) 27 1.3 高速太陽風中粒子與質子的流速差 30 1.4 Alfvén波對粒子的加速 35 1.5 研究緣起與目的 36 第二章 基本理論 40 2.1 Magnetohydrodynamics(MHD)基本方程 40 2.1.1 守恆式 42 2.1.2 Jump Conditions 43 2.2 快震波的基本性質與加速及加熱機制 46 2.3 Alfvén wave的基本性質 51 2.4 波與粒子的共振條件 53 2.5 Alfvén 波與粒子的迴旋共振 56 2.5.1 共振條件 57 2.5.2 Alfvén wave與粒子的拋射角散射 58 第三章 數值模擬結果 60 3.1 一維混和粒子碼( 1-D hybrid code ) 60 3.2 初始背景參數設定 63 3.3粒子加速的模擬結果 65 3.3.1 Alfvén波對粒子的迴旋共振加速 65 3.3.2 快震波的加速與加熱機制 76 3.3.3 粒子在震波加速後與Alfvén波共振減速 80 3.3.4 初始流速差經自發性激發的離子迴旋波之共振減速 89 第四章 總結 102 4.1 混合碼模擬的結果 102 4.2 總結 105 參考文獻 自述

    參考文獻

    Asbridge J. R.,Bame S. J. and Feldman W. C., Abundance differences in solar wind double streams, Solar Physics, vol. 37, pp.451-467, 1974.

    Asbridge J. R., Bame S.J., Feldman W.C. and Montgomery M. D., Helium and hydrogen velocity differences in the solar wind, J. Geophys. Res, vol. 81, pp.2719-2727, 1976.

    Axford W. I., The solar wind, Solar Physics, vol. 100, pp.575-586, 1985.

    Belcher J. W. and Leverett Davis, Jr., Large Amplitude Alfvén Waves in the Interplanetary Medium, 2, J. Geophys. Res. vol. 76, p.3534, 1971.

    Chao, J. K., Interplanetary collisionless shock wave. Rep. CSR TR-70-3, Mass. Inst. Of Technology, Center for space Res. Cambridge, Mass., 1970.

    Dubinin E., Sauer K. and McKenzie J. F., Differential ion streaming in the solar wind as an equilibrium state, J. Geophys. Res. vol. 110, Issue A7, CiteID A07101, 2005.

    Dusenbery P. B. and Hollweg .J. V., Generation of ion-conic distribution by upgoing ionospheric electrons, J. Geophys. Res, vol. 86, pp.7627-7638, 1981.

    Feldman W. C.; Asbridge J. R.; Bame S. J. and Gosling J. T., High-speed solar wind flow parameters at 1 AU, J. Geophys. Res, vol. 81, pp.5054-5060, 1976.

    Feldman W. C., Barraclough B. L., Phillips J. L. and Wang Y.-M., Constraints on high-speed solar wind structure near its coronal base: a ULYSSES perspective, Astronomy and Astrophysics, v.316, pp.355-367, 1996.

    Gary S. P., Goldstein B. E.and Steinberg J. T., Helium ion acceleration and heating by Alfvén/cyclotron fluctuations in the solar wind, J. Geophys. Res, Volume 106, Issue A11, pp.24955-24964, 2001.

    Goldstein B. E., Neugebauer M. and Smith E. J., Alfvèn waves, alpha particles, and pickup ions in the solar wind, J. Geophys. Res, vol. 22, NO.23, pp.3389-3392, 1995.

    Hollweg .J. V., A new resonance in the solar atmosphere. I – Theory, Solar Physics, vol. 62, pp. 227-240, 1979.

    Isenberg P. A. and Hollweg .J. V., On the preferential acceleration and heating of solar wind heavy ions, J. Geophys. Res, vol. 88, p.3923-3935, 1983.

    Jacques S. A., Solar wind models with Alfvèn waves, Astrophysical Journal, Part 1, vol. 226, pp.632-649, 1978.

    Lee L. C., and Wu B. H., Heating and Acceleration of Protons and Minor Ions by Fast Shocks in the Solar Corona, The Astrophysical Journal, Volume 535, Issue 2, pp.1014-1026, 2000.

    Lee L. C., A New Mechanism of Coronal Heating, Space Science Reviews, v. 95, Issue 1/2, pp. 95-106, 2001.

    Lee L. C., and Wu B. H., Coronal heating by fast magnetosonic shocks: Particle simulations, Space plasma simulation: proceedings of the Sixth International School/Symposium, ISSS-6, Garching, Germany, 3-7 September, 2001. Edited by J. Büchner, C.T. Dum, and M. Scholer. Berlin: Schaltungsdienst Lange o.H.G., p.22, 2001.

    Marsch E., Rosenbauer H., Schwenn R., Muehlhaeuser K.-H. and Neubauer F.M., Solar wind helium ions - Observations of the HELIOS solar probes between 0.3 and 1 AU, J. Geophys. Res, vol. 87, pp. 35-51, 1982a.

    Marsch E., Schwenn R., Rosenbauer H., Muehlhaeuser K.-H., Pilipp W. and Neubauer F. M., Solar wind protons:Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res, vol. 87, pp.52-72, 1982b.

    Marsch E., Goertz C. K. and Richter K., Wave heating and acceleration of solar wind ions by cyclotron resonance, J. Geophys. Res, vol. 87, pp.5030-5044, 1982c.

    Mckenzie J. F. and Marsch E., Resonant wave acceleration of minor ions in the solar wind, Astrophysics and Space Science, vol. 81, no. 1-2, pp.295-314, 1982.

    Neugebauer M., Goldstein B. E., Bame S. J. and Feldman W. C., ULYSSES near-ecliptic observations of differential flow between protons and alphas in the solar wind, J. Geophys. Res, vol. 99, A2, pp. 2505-2511, 1994.

    Neugebauer M., Goldstein B. E., McComas D. J.; Suess S. T. and Balogh A., Ulysses observations of microstreams in the solar wind from coronal holes, J. Geophys. Res, Volume 100, Issue A12, pp. 23389-23396, 1995.

    Neugebauer M., Goldstein B. E., Smith E. J. and Feldman, W. C., Ulysses observations of differential alpha-proton streaming in the solar wind, J. Geophys. Res, Volume 101, Issue A8, pp. 17047-17056, 1996.

    Ogilvie K. W., Coplan M. A. and Zwickl R. D., Helium, hydrogen, and oxygen velocities observed on ISEE 3, J. Geophys. Res, vol. 87, p.7363-7369, 1982.

    Parks G. K., Physics of Space Plasmas: An Introduction, Addison-Wesley publishing company, Seattle, 1991

    Steinberg J. T., Lazarus A. J., Ogilvie K. W., Lepping R. and Byrnes J., Differential flow between solar wind protons and alpha particles: First WIND observations, Geophysical Research Letters, Volume 23, Issue 10, p.1183-1186, 1996.

    Whang Y. C., Conversion of Magnetic-Field Energy Into Kinetic Energy in the Solar Wind, Astrophysical Journal, vol. 169, p.369, 1971.

    Wintoft P. and Lundstedt Henrik, A neural network study of the mapping from solar magnetic fields to the daily average solar wind velocity, Journal of Geophysical Research, Volume 104, Issue A4, pp. 6729-6736, 1999.

    涂傳詒, ‛‛日地空間物理學’’, 科學出版社, 北京市, 1988.

    吳伯翰, 震波與不連續結構之交互作用, 中央大學博士論文, 1996.

    林承忠, 快震波對磁層中重離子之加速, 成功大學碩士論文, 1997.

    陶逸倩, 極尖區的粒子加熱機制: Alfvén迴旋共振對重離子的加速, 成功大學碩士論文, 1998.
    莊宏親, Alfvén波對高速太陽風中氦離子的共振加速:氦離子與質子流速差的形成, 成功大學碩士論文, 2004.

    下載圖示
    2006-07-25公開
    QR CODE