| 研究生: |
胡少剛 Hu, Shao-Kang |
|---|---|
| 論文名稱: |
鋰離子電池無線充電之研究 Study on Lithium Ion Batteries Powered by Wireless Charging |
| 指導教授: |
黃炳照
Hwang, Bing-Joe 周澤川 Chou, Tse-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 無線充電 、鋰離子電池 |
| 外文關鍵詞: | lithium ion battery, wireless charging |
| 相關次數: | 點閱:100 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中共有兩個主要的研究主題,第一主題是合成以理論計算所設計之層狀LiAl1-xCoxNi1/3Mn1/3O2正極材料。由計算所得之LiAl1/3Ni1/3Mn1/3O2充放電平台,可以看出LiAl1/3Ni1/3Mn1/3O2是一種相當具有潛力的鋰離子電池正極材料。但是在實際實驗中卻無法以溶膠凝膠法合成出純相的LiAl1/3Ni1/3Mn1/3O2,為了抑制合成過程中不純物質的產生,LiAl1/3Ni1/3Mn1/3O2中的部分Al被以Co來取代,當層狀LiAl1-xCoxNi1/3Mn1/3O2正極材料中的Co含量,介於1/6≤x≤1/3時,可以在氧氣氣氛、900oC的煆燒溫度下合成出單一純相的LiAl1-xCoxNi1/3Mn1/3O2正極材料,在實驗中發現Co含量的增加可以提升LiAl1-xCoxNi1/3Mn1/3O2正極材料的放電電容量與導電度,同時藉由Co的摻雜而提升的導電度與結晶純度,對LiAl1-xCoxNi1/3Mn1/3O2正極材料的電化學表現影響十分深遠。
第二個研究主題,則是發展可以對鋰離子充電之無線充電模組。本研究所發展的無線充電技術,克服了以往技術的瓶頸,並可以藉由控制輸入電能與距離的方式,成功的對植入型鋰離子電池進行充電,在經過20次充放電後,仍可保有相當不錯的循環特性,雖然本研究所發展的無線充電模組的轉換效率約只有2~5%(發射天線輸入電能對電池輸出電能之間比值),但其轉換效率仍可藉由發射天線與接收天線的改良,而有所改善。
其次,本研究亦對LiNi0.45Mn0.45Co0.1O2/Li、LiMn2O4/Li、 Li4Ti5O12/Li、 MCMB/Li、 LiFePO4/Li 與 LiMn2O4/Li4Ti5O12等半電池與全電池在無線充電過程中,所呈現之循環特性與材料結構之變化進行探討。在研究中發現尖晶石結構之LiMn2O4與橄欖石結構之LiFePO4在無線充電過程中的電容量保持率,優於層狀結構之LiNi0.45Mn0.45Co0.1O2,尖晶石結構與橄欖石結構的正極材料,在經過無線充電測試後,其結構並無明顯變化,然而層狀結構之LiNi0.45Mn0.45Co0.1O2卻產生了相當嚴重的陽離子錯位排列。
另外,本研究亦對鋰離子負極材料,在無線充電過程中的循環特性與材料結構之變化進行探討,於實驗中發現尖晶石結構的Li4Ti5O12在無線過程中的電容量維持率高於層狀結構的MCMB(Meso-Carbon Micro-bead),在經過無線充電測試後Li4Ti5O12的材料結構並無明顯的變化,但是層狀結構之MCMB則碎裂成小顆的碳粒,由此可知尖晶石結構的Li4Ti5O12,具有較佳的結晶結構穩定度,其結果與正極材料所得之結果相同。此外全尖晶石材料所組成之全電池,在無線充電過程中亦保有相當優異的電容量維持率。
There are two main objectives of this study. The first objective is to synthesize the layered LiAl1-xCoxNi1/3Mn1/3O2 (0≦x≦1/3) cathode material designed by a computational approach. The calculated voltage curve of LiNi1/3Al1/3Mn1/3O2 compound is presented, indicating it is of great potential for a cathode material of lithium ion batteries. Unfortunately, it was found that the LiNi1/3Al1/3Mn1/3O2 compound without impurity phase could not be synthesized via a sol-gel process. To obtain a layered compound without impurity phase, partial of Al is replaced by Co in LiNi1/3Al1/3Mn1/3O2 compound in this study. Layered LiAl1/3-xCoxNi1/3Mn1/3O2 (0≦x≦1/3) compounds were synthesized via sol-gel reaction at 900oC under an oxygen stream. Single phase of the LiAl1/3-xCoxNi1/3Mn1/3O2 in 1/6≦x≦1/3 region could be prepared successfully. The discharge capacity and conductivity increased with an increase in the Co-substitution content. The enhancement of the conductivity and phase purity by the introduction of Co content shows profound influence on the performance of the LiAl1/3-xCoxNi1/3Mn1/3O2 compounds.
The second object is to develop a wireless charging process for the lithium ion battery. In this work, we developed the wireless microwave charging module to overcome the disadvantages of previous methods. The wireless microwave charging module can charge the implanted lithium ion battery in a suitable distance by tuning the power input and the implanted lithium ion battery shows excellent cycleability after 20 cycles. Although the conversion of the wireless microwave charging is only 2~5%, it can be improved by using other designs of antenna (microwave generation part) and rectify antenna (receive and conversion part).
The cycling performance of the LiNi0.45Mn0.45Co0.1O2/Li, LiMn2O4/Li, Li4Ti5O12/Li, MCMB/Li, LiFePO4/Li and LiMn2O4/Li4Ti5O12 cells and the structural stability of these electrode materials in the wireless powering process have been investigated in this work. It was found that the capacity retention of the spinel LiMn2O4 and olivine LiFePO4 cathode materials are better than that of the layered LiNi0.45Mn0.45Co0.1O2 in the wireless powering process. The structure of the spinel and olivine materials remains unchanged but the undesired cation mixing was observed in the layered LiNi0.45Mn0.45Co0.1O2.
The cycling performance and the structural stability of these various anode materials in the wireless powering process have also been investigated in this work. It was found that the capacity retention of the spinel Li4Ti5O12 is better than that of the layered MCMB (Meso-carbon Micro-bead) in the wireless powering process. The structure of the Li4Ti5O12 materials remains unchanged but the particles of the MCMB were disintegrated significantly after the cycling, indicating that the structural stability of the spinel anode is much better than that of the layered one in the wireless powering process. It is worthy to note that the same observation has been reported for the cathode materials in the wireless powering process. Consequently, the full cell of LiMn2O4/Li4Ti5O12 was demonstrated to be excellent capacity retention in the wireless powering process.
參考文獻
1. W.C. Brown, J.R. Mims, N.I. Heenan, IEEE International Conversion Record, vol. 13, Part 5. 225 (1965).
2. W.C. Brown, J.F Triner, IEEE trans. Microwave Theory Tech., vol. MTT-32, 1230 (1984).
3. T. Yoo, K. Chang, IEEE trans. Microwave Theory Tech., vol.40, 1259 (1992).
4. P. Koert, J.T. Cha, IEEE trans. Microwave Theory Tech., vol.40, 1251 (1992).
5. J.O. McSpadden, L. Fan, K. Chang, IEEE trans. Microwave Theory Tech., vol.45, 2053 (1998).
6. L.W. Epp, A.R. Khan, H.K. Smith, IEEE trans. Microwave Theory Tech., vol.48, 111 (2000).
7. Y.H. Suh, K. Chang, Eletron. Lett. Vol. 36, no. 7, 600 (2000).
8. J.O. McSpadden, K. Chang, IEEE MIT-S Int. Microwave Symp. Dig., 1749 (1994).
9. H. Dudaicevs, M. Kandler, Y. Manoli, W. Mokwa, E. Spiegel, Sensors and Actuators, A43, 157 (1994).
10. M. Schwarz, B.J. Hosticka, R. Hauschild, W. Scholles, H.K. Trieu, IEEE Internal Conference on Neural Networks, 653 (1996).
11. R. Lerch, E. Spiegel, R. Kakerow, R. Hakenes, H. Kappert, H. Kohlhas, N. Kordas, M. Buchmann, T. Franke, Y. Manoli, J. Muller, Internal Solid-State Circuits Conference. Digest of technical papers, 160 (1995).
12. T. Sato, F. Sato, H. Matsuki, IEEE trans. on Magnetics, 37 2925 (2001).
13. N. N. Donaldson, T. A. Perkin, Med. Biol. Eng. Comput., vol. 21, 612 (1983).
14. F. C. Flack, E. D. James, D. M. Schlapp, Sphincter, Med. Biol. Eng., vol. 9, 79 (1971).
15. E. S. Hochmair, IEEE trans. Biomed. Eng., vol. 31, 177 (1984).
16. M. Soma, D. C. Gabraith, R. L. White, IEEE trans. Biomed. Eng., vol. 34, 276 (1987).
17. J.M. Tarascon, M. Armand, Nature, vol. 414, 359 (2001).
18. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull., 15 783 (1980).
19. R. J. Gummow, M. M. Thackeray,E. I. F. Davdid, S. Hull, Mat. Res. Bull., 27 327 (1992).
20. B. Garcia, J. Farcy, J. P. Pereira-Ramos, N. Baffier, J. Electrochem. Soc., 144 1179 (1997).
21. L. D. Dyer, B. S. Borie, G. P. Smith, J. Am. Chem. Soc., 78 1499 (1954).
22. J. B. Goodenough, D. G. Wickham, W. J. Croft, J. Appl. Phys., 29 380 (1958).
23. A. Rougier, P. Gravereau, C. Delmas, J. Electrochem. Soc., 143 1168 (1996).
24. T. Ohzuku, A. Ueda,M. Nagayama, J. Electrochem. Soc., 140 1862 (1993).
25. C. Delmas, I. Saadoune, Solid State Ionics, 53 370 (1992).
26. C. Delmas, I. Saadoune, A. Rougier, J. Power Sources, 43 595 (1993).
27. J. Cho, G. Kim, H. S. Lim, J. Electrochem. Soc., 146 3571 (1999).
28. D. Caurant, N. Baffier, B. Garcia, J. P. Pereira-Ramos, Solid State Ionics, 91 45 (1996).
29. R. J. Gummow, M. M. Thackeray, Solid State Ionics, 53 681 (1992).
30. R. Stoyanova, E. Zhecheva, L. Zarkova, Solid State Ionics, 73 233 (1994).
31. E. Zhecheva, R. Stoyanova, Solid State Ionics, 66 143 (1993).
32. B. Banov, J. Bourilkov, M. Mladenov, J. Power Sources, 54 268 (1995).
33. Z. Liu, A. Yu, J. Lee, J. Power Sources, 81 416 (1999).
34. M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada, T. Mouri, J. Power Sources, 90 176 (2000).
35. B. J. Hwang, Y. W. Tsai, C. H. Chen, R. Santhanam, J. Mater. Chem., 13 1962 (2003).
36. T. Ohzuku, Y. Makimura, Chem. Lett., 642 (2001).
37. B. J.Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater., 15 3676 (2003).
38. Z. H. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid State Lett., 4 A200 (2001).
39. S. Jouanneau, K. W. Eberman, L. J. Krause, J. R. Dahn, J. Electrochem. Soc., 150 A1637 (2003).
40. Y. S. Horn, S. A. Hackney, A. R. Armstrong, P. G. Bruce, R. Gitzendanner, C. S. Johnson, , M. M. Thackeray, J. Electrochem. Soc., 146 2404 (1999).
41. K. Numata, C. Sakaki, S. Yamanaka., Solid State Ionics, 117 257 (1999).
42. Z. Lu, J. R. Dahn, J. Electrochem. Soc., 149 A815 (2002).
43. Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, , J. Electrochem. Soc., 149 A778 (2002).
44. M. M. Thackeray, P. J. Johnson, L. A. D. Picciotto, P. G. Bruce, J. B. Goodenough, Mat. Res. Bull., 19 179 (1984).
45. M. M. Thackeray, E. I. F. David, P. G. Bruce, J. B. Goodenough, Mat. Res. Bull., 18 461 (1983).
46. R. J.Gummow, A. d. Kock, M. M. Thackerat, Solid State Ionics, 69 59 (1994).
47. B.J. Hwang, R. Santhanam, D.G. Liu, J. Power Sources, 443 97-98 (2001).
48. B.J. Hwang, R. Santhanam, S.G. Hu, J. Power Sources, 108 250 (2002).
49. B.J. Hwang, Y.W. Tsai, R. Santhanam, Y.W. Wu, S.G. Hu, J.F. Lee, D.G. Liu, J. Power Sources, 123 206 (2003).
50. B.J. Hwang, R. Santhanam, C.P. Huang, Y.W. Tsai, J.F. Lee, J. Electrochem. Soc., 149, A694 (2002)
51. Y. Chen, G.X. Wanga J.P. Tian, K. Konstantinov, H.K. Liu, Electrochem. Acta, 50 435 (2004).
52. J. Ying, C. Jiang, C. Wan, J. Power Sources, 129 264 (2004)
53. I. Taniguchi, D. Song, M. Wakihara, J. Power Sources, 109 333 (2002)
54. M. Nishizawa, K. Mukai, S. Kuwabata, C. Martin, H. Yoneyama, J. Electrochem. Soc., 144 1923 (1997).
55. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 144 1188 (1997).
56. N. Raver, Y. Chouinard, J. F.Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Source, 97-98 503 (2001).
57. F. Zhou, C. A. Marianetti, M. Cococcioni, D. Morgan, G. Ceder, Phys. Rev. B, 69 201101 (2004).
58. A. Yamada, K. Yoshihiro, K. Y. Liu, J. Electrochem. Soc., 148 A1153 (2001)
59. A. Yamada, H. Mamoru, S.C. Chung, K. Yoshihiro, H. Koichiro, K.Y. Liu, J. Power Source, 119-121 232 (2003).
60. H. Huang, S. C. Yin, L. F. Nazar, Electrochem. Solid-State Lett., 4 A170 (2001).
61. F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett., 5 A47 (2002).
62. .S. Y. Chung, J. Bloking, Y. M. Chiang, Nature Mater., 1 123(2002).
63. A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc., 148, A224 (2001).
64. P. P. Prosini, D. Zane, M. Pasquali, Electrochem. Acta, 46 3517 (2001).
65. M. Herstedt, M. Stjerndahl, A. Nytén, T. Gustafsson, H. Rensmo, H. Siegbahn, N.e Ravet, M. Armand, J. O. Thomas, K. Edström, Electrochem. Solid-State Lett., 6 A202 (2003).
66. J. Yang, J. J. Xu, Electrochem. Solid-State Lett., 7 A515 (2004).
67. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc., 152 A607 (2005).
68. K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Mater. Chem., 14, 2690 (2004).
69. K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Power Sources, 146 529 (2005).
70. R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, J. Electrochem. Soc., 152, A858 (2005)
71. G. Arnold, J. Garche, R. Hemmer, S. Ströbele,C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources, 119 247 (2003).
72. K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, H.G. Kim, Electrochem. Comm., 5 839 (2003).
73. P. P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali, J. Electrochem. Soc., 149 A297 (2002).
74. T. H. Cho, H. T. Chung, J. Power Sources, 133 272 (2004).
75. K. Dokko, K. Shiraishi, K. Kanamura, J. Electrochem. Soc., 152 A2199 (2005)
76. X. Wu, S.B. Kim, J. Power Sources, 109 53 (2004).
77. K. Amine, H. Yasuda, M. Yamachi, Electrochem. Solid-State Lett., 3 178 (2000).
78. J. Wolfenstine, U. Lee, B. Poese, J.L. Allen, J. Power Sources, 144 226 (2005).
79. J.I. Yamaki, S.I. Tobishima, K. Hayashi, K. Sato, Y. Nemoto, M. Arakawa, J. Power Sources, 74 219(1998).
80. J.O. Besenhard, “ Handbook of Battery Materials”, Wiley-vch, p.293
81. M. M.Thackeray, The Electrochemical Society Proceedings, 94-28 233.
82. R. Bittihn, R. Herr, D. Hoge, J. Power Sources, 43 223 (1993).
83. M. S. Whittingham, R. Chen, T. Chirayil, P. Zavalij, Solid State Ionics, 94 227 (1997).
84. D. Rahner, S. Machill, H. Schreiber, K. Siury, M. Klob, W. Plieth, Solid State Ionics, 86 891 (1996).
85. G. A. Nazri, J. M. Trasscon, M. Schreiber, Mat. Res. Soc. Symp. Proc., 3 369 (1994).
86. J. Baker, R. Pynenburg, R. Koksbang, J. Power Sources, 52 184 (1994).
87. G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc., 141 2279 (1994).
88. C. Sigala, D. guymard, A. Verbaere, Y. Piffard, M. Tournoun, Solid State Ionics, 81 167 (1995).
89. Y. E. Eli, W. F. Howard, J. Electrochem. Soc., 144 L205 (1997).
90. N. Li, D. T. Mitchell, K. P. Lee, C. R. Martin, J. Electrochem. Soc., 150 A979 (2003).
91. Q. Wang, L. Liu, L. Chen, X. Huang, J. Electrochem. Soc., 151 A1333 (2004).
92. G. Martin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, Solid State Ionics, 136 1295 (2000).
93. Z. H. Yang, H. Q. Wu, Solid State Ionics, 143 173 (2001).
94. M. Winter, J. O. Besenhard, Electrochem. Acta, 45 31 (1999).
95. L. Yuan, K. Konstantinov, G.X. Wang, H.K. Liu, S.X. Dou, J. Power Sources, 146 180 (2005)
96. J. Yin, M.i Wada, S. Tanase, T. Sakaia, J. Electrochem. Soc., 151 A583 (2004).
97. B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov, R. Guidotti, J. Electrochem. Soc., 149 A675 (2002).
98. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont. J-M. Tarascon, Nature, 407 496 (2000).
99. T.M. Kang, K.T. Kim, J.H. Kim, H.S. Kim, P.S. Lee, J.Y. Lee, H.K. Liu, J. Power Sources, 133 252 (2004)
100. G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou, H. K. Liu, J. Alloys and Compouds, 306 249 (2000).
101. S. M. Hwang, H. Y. Lee, S. W. Jang, S. M. Lee, S. J. Lee, H. K. Baik, J. Y. Lee, Electrochem. Solid State Lett., 4 A97 (2001).
102. X. wu, Z. Wang, L. Chen, X. Huang, Eectrochem. Comm., 5 935 (2003).
103. W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, N. L. Wu, J. Power Sources, 140 139 (2005).
104. J. Xie, G. S. Cao, x. B. Zhao, Mater. Chem. Phys., 88 295 (2004).
105. J. Niu, J. Y. Lee, Electrochem. Solid-State Lett., 5 A107 (2002).
106. N. Dimov, S. Kugino, M. Yoshio, J. Power Sources, 136 108 (2004).
107. W.R. Liu, M.H. Yang, H.C. Wu, S.M. Chiao, N.L. Wu, Electrochem. Solid-State Lett., 8 A100 (2005)
108. K.K. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources, 26 397 (1989)
109. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc., 142 1431 (1995)
110. K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, J. Power Sources, 117 131 (2003).
111. M. Winter, J. O. Besenhard, M. E. Spahar and P. Novak, Adv. Mater., 10 725 (1998).
112. Y. Ein-Eli, W. F. Howard, S. H. Lu, S. Mukerjee, J. McBreen, J. T. Vaughey and M. M. Thackeray, J. Electrochem. Soc., 145 1238 (1998).
113. T. Ohzuku, K. Ariyoshi, S. Takeda, Y. Sakai, Electrochem. Acta, 46 2327 (2001).
114. P. V. Wright, D. E. Feton, J. M. Parke, Polymer, 14 589 (1973).
115. C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, Solid State Ionics, 11 91 (1983).
116. D. F. Shriver, M. A. Ratner, Chem. Rev., 4 254 (1988).
117. F. Croe, g. B. Appetcchi, L. Persi, B. Scrosati, Nature, 394 456 (1998).
118. W. Wieczorek, J. R. Stevens, Z. Florjanczyk, Solid State Ionics, 85 67 (1996).
119. C. M. Nilson, T. J. Bonagamba, M. A. Aegerter, Macromolecules, 33 1280 (2000).
120. H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham, Chem. Mater., 9 369 (1997).
121. D. Ostrovskii, L. M. Torell, G. B. Appetecchi, B. Scrosati, Solis State Ionics, 106 19 (1998).
122. G. B. Appetecchi, F. Croe, B. Scrosati, J. Power Sources, 66 77 (1997).
123. H. Y. Sung, Y. Y. Wang, C. C. Wan, J. Electrochem. Soc., 145 1207 (1998).
124. G. Venugopal, V. R. Reicher, J. Zhang, US Patent 5,549,987.27 1996.
125. F. Croe, g. B. Appetcchi, S. Slane, M. Salomon, M. Tavarez, S. Arumugam, Y. Wang, S. G. Greenbaum, Solid State Ionics, 86 307 (1996).
126. P. Arora, Z. Zhang, Chem. Rev., 104 4419 (2004)
127. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall Publishers, New Jersey, USA, 2001, 3rd edn., ch. 5.2.
128. Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu and J. F. Lee, Chem. Mater., 17 (2005) 3191.
129. G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, Solid State Ionics, 116 271 (1999).
130. K. Kang, Y.S. Meng, J. Breger, C.P. Clare, G. Ceder, Science, 311 977 (2006).
131. T. Ohzuku, A.Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta, 38 (1993) 1159.
132. G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, Solid State Ionics, 116 (1999) 271.
133. Y. Chen, G.X. Wang, K. Konstantinov, H.K. Liu, S.X. Dou, J. Power Sources, 119 (2003) 184.
134. P. E. de Jongh, P. H. L. Notten, Solid State Ionics, 148 3-4, 259 (2002)
135. Y. Sun, C. Ouyang, Z. Wang, X. Huang, L. Chen, J. Electrochem. Soc., 151 A504 (2004).
136. K.B.R. Gover, R. Kanno, B.J. Mitchell, M. Yonemura, Y. Kawamoto, J. Electrochem. Soc., 147 4045 (2000).
137. J. Kim, K. Amine, J. Power Sources, 104 33 (2002).
138. Y. Gao, M.V. Yakovleva, W.B. Ebner, Electrochem. Solid State Lett., 1 117 (1998).
139. B. J. Hwang, R. Santhanam, D. G. Liu, Y. W. Tsai,” J. Power Sources, 102 326-31 (2001).
140. G. Amatucci, J. M. Tarascon, J. Electrochem. Soc., 149, K31 (2002).
141. B. J. Hwang, Y. W. Tsai, R. Santhanam, Y. W. Wu, S. G. Hu, J. F. Lee, D. G. Liu, J. Power Sources, 123 206 (2003).
142. M Venkateswarlu, C.H. Chen, J.S. Do, C.W. Lin, T.C. Chou, B.J. Hwang, J. Power Sources, 146 204 (2005).
143. P. Kubiak, A. Garcia, M. Womes, L. Ajdon, J. Olivier-Fourcade, P. E. Lippens, J. Power Sources, 119-121 626 (2003).
144. L. Kavan, J. Prochazka, M. Spitler, M. Kalbac, M. Zukalova, T. Drezen, M. Gratzel, J. Electrochem. Soc., 150 A1000 (2003).
145. C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, J. Electrochem. Soc., 148 A102 (2001).
146. J. Jiang, J. Chen, J. R. Dahn, J. Electrochem. Soc., 151 A2082 (2004).
147. H. Shi, J. Barker, M.Y. Saidi, R. Koksbang. J. Electrochem. Soc., 143 3466 (1996).
148. J.R. Dahn, R. Fong, M. J. Spoon, Phys. Rev. B, 42 6424 (1990).
149. T.S. Ong, H. Yang, J. Electrochem. Soc., 149 A1 (2002).
150. S. Basu, J. Power Sources, 81 200 (1999).
151. W. Huang, R. Frech, J. Electrochem. Soc. 145 3312 (1998).