簡易檢索 / 詳目顯示

研究生: 李秉諺
Li, Ping-Yen
論文名稱: DGPS輔助於無人飛機自動降落控制器之實現
The Realization of DGPS-aided Auto-Landing Controller for Unmanned Aerial Vehicle
指導教授: 蕭飛賓
Hsiao, Fei-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 98
中文關鍵詞: 無人飛機系統鑑別線性二次高斯積分自動降落硬體迴路模擬環境
外文關鍵詞: UAV, System identification, Linear quadratic integral, Auto-Landing, Hardware-In-The-Loop Environment (HILE)
相關次數: 點閱:124下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究中將於地面架設一DGPS 輔助站持續地發送定位校正資訊於即將進場之無人飛機,提升無人飛機導航資訊的準確度,並透過自行研發之自動降落控制系統進行穩定控制。本論文可分為兩大部分,分別為為人飛機系統鑑別以及基於線性二次高斯積分(LQGI)控制理論所設計的自動降落控制系統。飛機之數學模型藉由一組輸入與輸出的資料透過觀察者卡爾曼率波(OKID)系統鑑別的方法而得到,隨之利用此數學模型來設計結合縱向下滑軌跡追蹤和水平飛行控制器之自動降落控制系統。無人飛機之降落策略包含四個階段:進場、陡峭的下滑、平緩的下滑與平飄過程到最後的著陸點。飛機保持固定的飛行路徑角在下滑的階段,而在平飄過程中,飛機沿著指數型態的下滑軌跡使機頭抬高並且以很緩慢的下降率降落於跑道上。最後,此自動降落控制器已成功地使用黑面琵鷺-100號無人飛機在硬體迴路模擬環境底下獲得驗證。

    In this research, a DGPS aiding station integrated with the Ground Control Station will continuously transmit positioning correction information to the UAV approaching for landing. This would improve the accuracy of the UAV’s navigational data for the automatic control system to perform stable and precise approach and landing to the ground. This thesis can be treated in two major parts: aircraft system identification and synthesis of Auto-Landing controller based on linear quadratic Gaussian integral (LQGI) design. The aircraft model is derived by a set of input and output data fed into observer / Kalman identification (OKID) technique. Subsequently, the model is utilized to design the Auto-Landing controller which is synthesized by combining the longitudinal pitch angle tracking controller and the wing-level flight controller. The landing maneuver of the UAV comprises four segments: approach, steep glideslope, shallow glideslope and flare. In glideslope phase we have to maintain a constant flight path angle. For the flare maneuver, the aircraft follows the descent path which is an exponential curve, and then the aircraft can raise its nose and sink softly toward the runway. In the end of this thesis, the Auto-Landing controller is successfully validated in the Hardware-In-The-Loop (HIL) simulation using the Spoonbill-100 UAV.

    中文摘要................................................. I ABSTRACT............................................... III EXTENDED CHINESE ABSTRACT.............................. IV ACNOWLEDGEMENT......................................... X CONTENTS............................................... XI LIST OF TABLES......................................... XIII LIST OF FIGURES........................................ XIV NOMENCLATURE........................................... XVI CHAPTER 1 INTRODUCTION................................ 1 1.1 Introduction to Unmanned Aerial Vehicle........... 1 1.2 Motivations and Objectives........................ 4 1.3 Literature Reviews................................ 6 1.4 Layout of Thesis.................................. 9 CHAPTER 2 SPOONBILL-100 UAV SYSTEM CONFIGURATION...... 10 2.1 Spoonbill-100 UAV................................. 10 2.2 Onboard Avionics System........................... 12 2.2.1 Onboard computer................................ 14 2.2.2 Sensor system................................... 16 2.2.3 Batteries....................................... 20 2.3 Ground Control Station............................ 21 2.4 Differential GPS aided Station.................... 23 2.5 Hardware-In-The-Loop Simulation Environment....... 26 CHAPTER 3 SYSTEM IDENTIFICATION....................... 28 3.1 Aircraft System Identification.................... 28 3.1.1 Linearization of Longitudinal and Lateral Equation of Motion................................................. 29 3.1.2 Discrete-Time Linear State-Space Model.......... 31 3.1.3 System Identification procedure................. 32 3.2 Observer / Kalman Filter Identification........... 34 3.2.1 Computation of Markov Parameter................. 35 3.2.2 Eigensystem Realization Algorithm............... 38 3.3 Identification Result and Discussion.............. 42 3.3.1 Longitudinal Model Identification and Validation 44 3.3.2 Lateral Model Identification and Validation..... 49 CHAPTER 4 AUTO-LANDING CONTROLLER DESIGN.............. 54 4.1 Optimal Linear Quadratic Integral................. 54 4.2 Optimal Observer: Kalman Filter................... 57 4.3 Concepts of Landing Trajectory Design............. 62 4.4 Synthesis of Auto-Landing Controller Design and Simulation............................................. 64 4.4.1 Longitudinal pitch Angle Tracking Controller Design ........................................................65 4.4.2 Wing-Level Flight Controller Design............. 69 4.5 Hardware-In-Loop (HIL) Simulation Results......... 72 4.5.1 The first landing simulation result............. 72 4.5.2 Flare maneuver analyze.......................... 77 CHAPTER 5 CONCLUDING REMARKS.......................... 92 5.1 Summary of Contributions.......................... 93 5.2 Future Works...................................... 94 REFERENCES............................................. 96 VITA................................................... 98

    1.General Atomics MQ1 Predator
    http://en.wikipedia.org/wiki/General_Atomics_MQ1_Predator.
    2.K. Nonami, Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV, Journal of system Design and Dynamics, Vol. 1, No. 2, pp. 120-128, 2007.
    3.Niculescu, M., Lateral track control law for Aerosonde UAV, 39th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2001-0016, January 2001.
    4.Chan, W. L., Lee, C. W., Hu, Y. T., Hsiao, F. B., Preliminary design and analysis for an endurance UAV, in Proceeding of the 5th Taiwan-Indonesia Workshop on Aeronautical Science, Technology and Industry, Tainan, Taiwan, Nov. 13-16, 2006.
    5.Hsiao, F. B., Lai, Y. C., Tenn, H. K., Hsieh, S. Y., Chen, C. C., and Chan, W. L., The development of an unmanned aerial vehicle system with surveillance, watch, autonomous flight and navigation capability, 21th Bristol UAV systems conference, Bristol, U.K., 2006.
    6.Chan, W. L., Sensor data compatibility correction and continuous-time nonlinear model identification of a fixed-wing unmanned air vehicle, Ph.D Thesis, National Cheng Kung University, 2011.
    7.Lee, C. S., The realization of optimal stability augmentation autopilot for unmanned air vehicle, Master Thesis, National Cheng Kung University, 2008.
    8.Lee, C. S., design and implantation of lateral flight controller using constrained predictive control for a fixed-wing unmanned air vehicle, Ph.D Thesis, National Cheng Kung University, 2012.
    9.Ding, Y. R., Chen, Y. H., Sun, C. H., and Hsiao, F. B., The implementation of autonomous formation flight capability to a small unmanned aerial vehicle system based on fuzzy logic control, Vol. 43, No. 4, pp. 301-312, 2011.
    10.Ding, Y. R., Development and flight test of autonomous formation flight capability for small UAV system, Ph.D Thesis, National Cheng Kung University, 2012.
    11.Joo, S., Ippolito, C., Al-Ali, K., and Yeh, Y.-H., Vision Aided Inertial Navigation with Measurement Delay for Fixed-Wing Unmanned Aerial Vehicle Landing, 2008 IEEE Aerospace Conference, Pages 1-9, March, 1-8, 2008.
    12.Barber, D. B. S. R. Griffiths, T. W. McLain, and R. W. Beard, Autonomous Landing of Miniature Aerial Vehicles, Journal of aerospace Computing, Information, and Communication, Vol. 4, May 2007.
    13.Baton, G. H., and Tragesser, S. G., Autolanding trajectory design for X-34, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Portland, Oregon, pp.15-24, August, 1999.
    14.Cho, A., Kim, J., Lee, S., Choi, S., Lee, B., and Kim, B., Fully Automatic taxing, Takeoff and Landing of a UAV only with a Single-Antenna GPS Receiver, Proceedings of AIAA 2007 Conference and Exhibit, Rohnert Park, California, 2007.
    15.Hsiao, F. B., Chan, W. L., Lai, Y. C., Tseng, L. C., Hsieh, S. Y., and Tenn, H. K., Landing longitudinal control system design for a fixed wing UAV, AIAA Aerospace Science Meeting and Exhibit, Nevada, 2007.
    16.Konno, H., Design of an aircraft landing system using dual-frequency GNSS, Master Thesis, Stanford University, December, 2007.
    17.Zadeh, L. H., From Circuit Theory to System Theory, Proceedings of the IRE, Vol. 50, pp.856-865, May, 1962.
    18.Nelson, R.C., Flight Stability and Automatic Control 2nd Edition, McGraw-Hill, Singapore, pp. 96-127, 1998.
    19.Klein, V., Morelli, E. A., Aircraft system identification: theory and practice, American Institute of Aeronautics and Astronautics.
    20.Juang, J. N., Applied system identification, Prentice Hall Inc., New Jersey, United States, pp. 175-255, 1994.
    21.Verdult, V., Lovera, M., and Verhaegen, M., Identification of linear parameter-varying state-space models with application to helicopter rotor dynamics, International Journal of Control, Vol. 77, No. 13, pp. 1149-1159, 2004.
    22.Mahmoud, M. S. and Koesdwiady, A. B., Improved digital tracking controller design for pilot-scale unmanned helicopter, J. Franklin Inst., 2011.
    23.Feng, Z. P., Zhu, J. M., Allen, Robert, Design of continuous and discrete LQI control systems with stable inner loops, Journal of Shanghai Jiaotong University, Vol. 12, No. 6, pp. 787-792, 2007.
    24.Sun, C. H., Optimal altitude tracking controller design for a fixed-wing unmanned aerial vehicle, Master Thesis, National Cheng Kung University, 2012.
    25.Stevens, B. L., and Lewis, F. L., Aircraft control and simulation, 2nd edition, John Wiley & Sons, 2003.
    26.Rosa, P. Silvestre, C., Cabecinhas, D., and Cunha, R., Autolanding controller for a fixed wing unmanned air vehicle, Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, August, 2007.
    27.Bryson, A. E., Jr., and Ho., Y.-C., Applied Optimal Control, New York: Hemisphere, 1975.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE