簡易檢索 / 詳目顯示

研究生: 王煥清
Wang, Adam
論文名稱: CH4/CO/AIR混合燃氣之火焰速度分析
An Analysis of the Flame Speed of CH4/CO/AIR Mixture
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 直管系統層流火焰速度
外文關鍵詞: Tube Method, Laminar Flame speed
相關次數: 點閱:64下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣化生質能主要可燃成份為氫氣、一氧化碳及甲烷,如果能了解其混合燃燒特性對於未來使用氣化生質能會有很大幫助。本論文主要針對甲烷搭配一氧化碳之混合燃氣進行研究,使用自行設計的直管系統進行火焰觀察,量測在常溫常壓下不同當量比(ψ=0.85、1.0、1.15)與不同混合比例之火焰傳遞速度、層流火焰速度變化。
    實驗觀察顯示火焰傳遞速度與層流火焰速度均隨甲烷添加一氧化碳比例增加而加速,而火焰傳遞速度是在甲烷混合至85%CO時達到最大值,而不同當量比之層流火焰速度則是在混合80%CO時達到最大值(ψ=1.0;54.3 cm/s);進一步增加一氧化碳時,火焰速度則開始下降。火焰傳遞面積也會跟著一氧化碳混合量增加而變大,在添加85%CO受到的熱傳效應與浮力效應的影響,火焰傳遞面積亦會發展到最大值。
    本研究利用Chemkin 3.6搭配Gri-Mech 3.0反應機構模擬火焰反應以進行靈敏度分析,分析顯示混合CO使甲烷火焰中自由基量增加及火焰溫度提昇使得層流火焰速度加速,而添加逾80%CO時,因系統O2及OH濃度過低,造成主要釋熱反應OH+CO<=>CO2+H反應速率下降使層流火焰速度開始減速。

    The major combustible components in the gasified products of biomass are hydrogen, carbon monoxide, and methane. To fully utilize the gasified products, a detailed understanding of the combustion characteristics of the product mixtures is crucial. This thesis research focused on the combustion of the mixtures of methane and carbon monoxide. By using a self-designed tube method, the flame propagation speeds in the tube were measured. Coupled with the flame area estimation, the laminar flame speeds were deduced at different equivalence ratio (ψ= 0.85,1.0,1.15) and different mixing ratios of Methane and carbon monoxide.
    The experimental results indicated that the flame propagation speeds as well as the deduced laminar flame speeds increased initially with the amount of carbon monoxide in the mixtures, and, a peak propagation speed and a peak flame speed were observed for 85%CO and 80%CO mixtures, respectively. The observed maximum laminar flame speed for CH4/CO mixtures was 54.3cm/s at equivalence ratio of 1 and 80%CO content. Further increase the amount of carbon monoxide, the flame speed started to drop. Flame area also increased with increasing amount of carbon monoxide. Caused by heat transfer and buoyancy effects, flame area was also developed to a peak value at 85%CO in the mixture.
    In conjunction with GRI-3.0 mechanism, detailed reaction kinetic modeling of the mixtures was performed using Chemkin 3.6. The results showed that the addition of CO into CH4 increased the amount of free radicals in the flame, and the flame temperature raise as well to make the laminar flame speed increase. However, mixtures with more than 80%CO produced less amount of OH for low concentration of O2 in the system, thus decrease the rate of the major heat release reaction OH + CO <=> CO2 + H as well as the laminar flame speed.

    摘要I AbstractII 誌謝III 目錄IV 表目錄V 圖目錄IX 符號說明XII 第一章 導論1 1-1 前言1 1-2 火焰速度量測技術3 1-3 研究動機與目的7 第二章 文獻回顧與火焰速度影響因素9 2-1 文獻回顧9 2-2 火焰速度影響因素11 第三章 實驗設備與分析13 3-1 實驗設備13 3-2 實驗步驟16 3-3 實驗分析17 第四章 實驗結果與分析討論21 4-1 一氧化碳比例對於火焰傳遞速度影響21 4-2 一氧化碳比例對火焰面積的影響22 4-3 一氧化碳比例對於火焰速度影響23 4-4 數值模擬層流火焰速度與文獻比對24 4-5 CH4/CO反應機構探討25 第五章 結論與未來工作29 5-1 結論29 5-2 未來工作31 參考文獻32 表34 圖47

    [1]經濟部能源局網站(www.moeaboe.tw),97年國內能供需概況
    [2]廢棄物能源利用技術開發與推廣計畫,經濟部能源局委辦,財團法人工業技術研究院執行,93年
    [3]K.K. Kuo, PRINCIPLES OF COMBUSTION, SECOND EDITION Chapter 5, Wiley-interscience, 2005
    [4]E. Mallard and H. L. LeChatelier, Ann. Mines 4:379 (1883)
    [5]V. Karpor, A. LipatniKov and V. Zimont, Twenty-Sixth International Symposium on Comubsiton, 1996
    [6]Abdel-Gayed, R. G., and D. Bradley, Philosophical Transactions of the Royal Society, A301 (1457):1, 1981
    [7]N.A. Al-Dabbagh, and G.E. Andrews, Combustion and Flame 55:31-52, 1984
    [8]G.E. Andrews, D. Bradley, Combustion and Flame, 18:133-153, 1972
    [9]J. Natarajan, T. Lieuwen and J. Seitzman, Combustion and Flame, 151:104-119, 2007
    [10]F.N. Egolfopoulos, H. Zhang, and Z. Zhang, Combustion and Flame, 109:237-252, 1997
    [11]F.N. Egolfopoulos, P. Cho, C.K. Law, Combustion and Flame, 76:375-391, 1989
    [12]R.J. Kee, J.F. Grcar, M.D. Smoke, and J.A. Miller, Sandia Repot SAND85-8240, 1985
    [13]Warnatz J., Combustion Chemistry (W.C. Gardiner, Jr., Ed.), Springer-Verlag, New York, p.197, 1984
    [14]M. Ilbas, A.P. Crayford, I. Yılmaza, P.J. Bowen, N. Syred, International Journal of Hydrogen Energy, 31:1768-1779, 2006
    [15]Khizer Saeed, C.R. Stone, Combustion and Flame, 139:152-166, 2004
    [16]H.N. Phylakton, G.E. Andrews, and P. Herath, Journal of Loss Prevention in the Process Industries, 3:355-364, 1990
    [17]H.F. Coward and F.J. Hartwell, Journal of the Chemical society, 2676-2684, 1932
    [18]G. Yu, C.K. Law, C.K. Wu, Combustion and Flame, 63:339-347, 1986
    [19]B.E. Milton, and J.C. Keck, Combustion and Flame, 58:13-22,1984
    [20]C.K. Law, and O.C. Kown, International Journal of Hydrogen Energy, 29:867-879, 2004
    [21]T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:503-510, 1959
    [22]T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:511-524, 1959
    [23C].M. Velopoulos and F.N. Egolfoulos, Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute, 1317-1323, 1994
    [24]B. Lewis, “Discussion” Selected Combustion Problem, AGARD, p.177, 1954
    [25]A. M. Kanury, Introduction to Combustion Phenomena, Chapter 8, Gordon and Breach, New York, 1975
    [26]T.W. Reynolds, and M. Gerstein, Third Symposium (International) on Combustion/The Combustion Institute, p.190-194, 1949
    [27]C. Tanford, and R.N. Pease, Journal of Chemical Physics, vol.15 P.431, 1947
    [28]C.-Y. Wu, Y.-C. Chao, T.S. Cheng, C.-P. Chen, C.-T. Ho, Combustion and Flame, 156:362-373, 2009

    下載圖示 校內:2011-08-30公開
    校外:2011-08-30公開
    QR CODE