簡易檢索 / 詳目顯示

研究生: 賴盈娟
Lai, Ying-Jyuan
論文名稱: 探討超疏水及超親水性質之轉換:具有黑矽結構或圓柱結構之PDMS表面
Investigation of switching between superhydrophobicity and superhydrophilicity:polydimethyl siloxane surface with black silicon structure or micropillars
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 超疏水超親水PDMS黑矽結構
外文關鍵詞: superhydrophobicity, contact angle, black silicon, inductively coupled plasma /reactive ion etching, micropillar
相關次數: 點閱:120下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   超疏水表面一直是大家所熟悉且被廣泛研究的課題,本研究利用誘導感應偶和電漿離子蝕刻在矽晶圓表面形成黑矽結構(Black silicon),再以旋轉塗佈法及PDMS翻模複製法來製備基板。另外我們亦利用CNC微鑽法及PDMS蝕刻法來製備超疏水表面,超親水性質則以氧氣電漿製程得到,再加以探討其超疏/親水表面性質轉換的情形。
      由實驗結果顯示,旋轉塗佈PDMS的製備方法所得到的結果為大部份的微針結構皆被PDMS覆蓋住,無法有效得到一超疏水表面;而使用PDMS翻模複製法,即可得到接觸角大於150∘的超疏水表面。另外,具備PDMS圓柱陣列之表面亦可呈現超疏水的性質。在超親水及超疏水的性質轉換上,當PDMS黑矽表面經氧電漿改質後,再靜置180℃烘箱,可經4小時成功使超親水表面回復為超疏水表面。而PDMS圓柱陣列表面,在180℃下,30分鐘內則可使超親水表面回復成超疏水。

    Superhydrophobicity has been a well-known phenomenon and a widely studied research topic. In this study, inductively coupled plasma and reactive ion etching process was utilized to create black silicon, which was further spin coated or casted with polydimethyl siloxane (PDMS) intended to form a superhydrophobic substrate. Another strategy for preparation of a superhydrophobic substrate was to use the computer numerical control in conjunction with PDMS etching to form a PDMS micropillar array. These fabricated substrates were then used for study of superhydrophobicity and switching between superhydrophobicity and superhydrophilicity. It was found that spin coating of PDMS yielded no superhydrophobic surface due to nearly complete coverage of PDMS on black silicon structures. On the other hand, the PDMS substrate replicated by black silicon and the PDMS micropillar array show superhydrophobicity. As to switching between superhydrophobicity and superhydrophilicity, the PDMS substrate with black silicon structure and the PDMS micropillar array were treated with O2 plasma to become superhydrophilic and their superhydrophobicity was recovered by being placed in the 180oC oven after 4 hours and 30 minutes, respectively.

    目錄 中文摘要 I Extended abstract II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 第二章 理論與文獻回顧 3 2-1 超疏水表面 3 2-2 超疏水理論 5 2-2-1 楊氏(Young)方程式 5 2-2-2 溫佐(Wenzel)方程式[4, 5] 6 2-2-3 卡西(Cassie)方程式[6] 7 2-2-4 其他 8 2-3 超疏水表面的製備 10 2-3-1 粒子堆疊法(Assembly of particles) 10 2-3-2 結晶成長法(Crystal growth) 12 2-3-3 編織法(Fibers and textiles) 12 2-3-4 微影技術(Lithographic techniques) 14 2-3-5 仿生技術(Biomimetic techniques) 16 2-3-6 溶膠-凝膠法(Sol-gel reaction) 18 2-3-7 其他 20 2-4 製備Polydimethylsioxane (PDMS)超疏水表面 21 2-5 轉換超親/疏水表面(Switching between superhydrophobicity & superhydrophilicity) 25 2-5-1 藉機械力轉換表面性質 25 2-5-2 藉溫度轉換表面性質 27 2-5-3 溫度及酸鹼值轉換表面性質 29 2-5-4 藉氧電漿轉換PDMS表面性質 30 2-6 超疏水表面的應用 31 第三章 實驗材料與裝置 35 3-1 實驗材料與藥品 35 3-2 實驗儀器 36 3-3 實驗步驟 43 3-3-1 PDMS旋轉塗佈法 43 3-3-2 PDMS翻模複製法 46 3-3-3 超疏水/超親水表面性質之轉換 47 3-3-4 製備具圓柱結構之超疏水表面 48 第四章 實驗結果與討論 51 4-1 製備具有黑矽結構之超疏水表面 51 4-1-1 PDMS旋轉塗佈法 52 4-1-1-1 轉速和時間之影響 52 4-1-1-2 PDMS濃度之影響 54 4-1-2 PDMS翻模複製法 58 4-1-2-1 PDMS負向模 58 4-1-2-2 PDMS正向模 61 4-1-3 超疏/親水表面性質轉換之探討 62 4-2 製備具有圓柱結構之超疏水表面 65 4-2-1 CNC 微鑽法 65 4-2-2 PDMS蝕刻法 68 4-2-3 超親/疏水表面性質轉換之探討 70 第五章 結論 71 第六章 未來工作 72 第七章 參考文獻 73 表目錄 表3-1、 黑矽結構之ICP製程條件 44 表3-2、 圓洞結構條件 49 表3-3、 雕刻機參數 49 圖目錄 圖2-1、 蓮葉表面自潔示意圖[1]。(a) 水滴在平滑表面滑動,汙染物僅被干擾並未被帶走 (b) 水滴在粗糙表面滑動,汙染物隨水滴被帶走 4 圖2-2、 蓮葉表面之SEM結構圖[1]。 4 圖2-3、 楊氏方程式示意圖[3]。 5 圖2-4、 溫佐液滴模型示意圖[3]。 6 圖2-5、 卡西液滴模型示意圖[3]。 7 圖2-6、 表面粗糙度對於接觸角之關係圖[7]。 8 圖2-7、 五種超疏水表面之示意圖[8]。(a) Wenzel’s state (b) Cassie’s state (c) Lotus state (d) Wenzel’s state和Cassie’s state之過渡狀態 (e) Gecke state 9 圖2-8、 使用浸潤塗佈粒子的示意圖及SEM圖[10]。 11 圖2-9、 micro/nanoscale的複合結構粒子示意圖及SEM圖[11]。 11 圖2-10、 複合結構粒子結合layer-by-layer排列示意圖及SEM圖[12]。 11 圖2-11、 各式晶體結構的SEM圖[13-15]。 12 圖2-12、 纖維表面粗糙化之示意圖及SEM圖[16]。 13 圖2-13、 纖維摻和微米級粒子之SEM圖[17]。 13 圖2-14、 陶瓷纖維薄膜之SEM圖[18]。 14 圖2-15、 纖維表面經MTS改質後之SEM圖[19]。 14 圖2-16、 蜂巢結構製作之示意圖及SEM圖[20]。 15 圖2-17、 波浪狀結構製作之示意圖及SEM圖[21]。 16 圖2-18、 利用軟微影技術對蓮花葉翻模之示意圖及SEM圖[22]。 17 圖2-19、 利用光微影技術仿蒼蠅眼得超疏水表面之示意圖及SEM圖[23]。 17 圖2-20、 利用溶膠-凝膠法製備超疏水表面之SEM圖[25]。 18 圖2-21、 利用氣-液溶膠-凝膠法製備超疏水表面之SEM圖[26]。 19 圖2-22、 利用DRIE製程製備超疏水表面之SEM圖[27]。 20 圖2-23、 利用Polystyrene resin所製備出之超疏水表面SEM圖[28]。 21 圖2-24、 具高吸附力之超疏水表面[28]。(a) 基板旋轉90∘(b) 基板旋轉180∘ 21 圖2-25、 在PDMS上製備六角柱型結構之示意圖及SEM圖[29]。 22 圖2-26、 具圓柱結構之可彎式PDMS超疏水表面製程示意圖及SEM圖[30]。 23 圖2-27、 藉由雷射蝕刻PDMS的方式製備超疏水表面示意圖及SEM圖[31]。 24 圖2-28、 酸腐蝕PDMS後經改質得之超疏水表面[32]。 24 圖2-29、 使用polyamide所編織之三角網狀結構SEM圖[33]。 (a) 經機械力拉深延展前(b) 經機械力拉深延展後 26 圖2-30、 轉換表面之接觸角量測圖[33]。(a) 經機械力拉深延展前(b) 經機械力拉深延展後 26 圖2-31、 藉氣壓控制得轉換親疏水表面性質之示意圖及SEM圖[34]。 26 圖2-32、 藉由氣壓控制來得到可轉換親疏水性質表面之接觸角測量圖[34]。 27 圖2-33、 溫度改變對PNIPAAm結構的影響示意圖及親疏水轉換之接觸角[35]。 28 圖2-34、 PDMS經氧電漿處理後個別施以不同熱處理時間的接觸角回覆圖[36]。 28 圖2-35、 利用MTEOS得珊瑚狀表面結構及親疏水比較圖[37]。(左) 疏水狀態(右) 親水狀態 29 圖2-36、 溫度及酸鹼值對表面親疏水性的影響[39]。(a) 不同之pH值及溫度對接觸角之關係圖 (b) 經多次表面性質轉變之接觸角 30 圖2-37、 觀察PDMS表面組成之靜態二次離子質譜圖。PDMS表面(a) 未經氧電漿改質 (b) 經氧電漿改質[40] 31 圖2-38、 多重翻模流程圖[45]。(AAO = anodic aluminium oxide 32 圖2-39、 利用整齊排列之奈米柱得到的可透光之超疏水表面結構圖與光穿透率圖[45]。 32 圖2-40、 利用奈米碳管所製備成的透明超疏水薄膜之SEM圖[46]。 33 圖2-41、 (a)流體通入流道(b)流體停留在超疏水之閘閥處(c)加溫使閘閥變為超親水並使流體通過[47]。 34 圖2-42、 微米圓柱陣列上長有奈米銀之SEM圖[48]。 34 圖2-43、 溶質R6G沉積於矽基板上與顯微拉曼檢測圖[48]。 34 圖3-1、 電漿輔助式化學氣相沈積與感應偶合式電漿蝕刻系統 37 圖3-2、 晶圓切割機 37 圖3-3、 抽氣幫浦 38 圖3-4、 旋轉塗佈機 38 圖3-5、 高解析場發射掃描式電子顯微鏡 39 圖3-6、 鍍金機 40 圖3-7、 接觸角測量系統 40 圖3-8、 接觸角測量儀 41 圖3-9、 氧電漿清潔器 42 圖3-10、 CNC雕刻機 42 圖3-11、 帶鋸機 43 圖3-12、 PDMS旋轉塗佈法製備超疏水表面流程圖 43 圖3-13、 PDMS翻模複製法流程圖 46 圖3-14、 製備圓柱結構之流程圖 48 圖3-15、 圓洞結構示意圖 49 圖4-1、 黑矽結構之SEM圖及其接觸角。(a) 1000X (b) 3000X 51 圖4-2、 PDMS溶液旋轉塗佈於黑矽所測得之接觸角,分別進行不同的轉速及時間。(a) 未塗佈PDMS之針草 (b) 3000rpm 30s (c) 6000rpm 30s 52 圖4-3、 PDMS溶液旋轉塗佈於黑矽之SEM圖。(a) 3000rpm30s (b) 6000rpm30s 53 圖4-4、 PDMS溶液以6000rpm的轉速旋轉塗佈於黑矽所測得之接觸角 53 圖4-5、 PDMS溶液旋轉塗佈於黑矽之SEM圖。(a) 未塗佈PDMS (b) 經轉速6000rpm塗佈60min 54 圖4-6、 經n-hexane稀釋之的PDMS溶液以6000rpm轉速旋塗20分鐘於空白玻片上之接觸角量測結果。PDMS溶液之重量百分比分別為(a) 100wt% (b) 80wt% (c) 60wt% (d) 40wt% 55 圖4-7、 重量百分比為80wt%之PDMS溶液所測得之接觸角,並調高塗佈時間。(a) 30s (b) 10min (c) 20min (d) 60min 56 圖4-8、 經n-hexane稀釋之的PDMS溶液以6000rpm的轉速旋塗20分鐘於黑矽之SEM圖及其接觸角。 57 圖4-9、 經n-hexane稀釋之PDMS以6000rpm的轉速旋塗20分鐘於黑矽之接觸角比較。 58 圖4-10、 PDMS負向模表面結構之剖面和俯視SEM圖及其接觸角。 59 圖4-11、 Diluted PDMS負向模之剖面和俯視SEM圖及其接觸角。 60 圖4-12、 PDMS正向模表面結構之SEM圖及其接觸角。 61 圖4-13、 Diluted PDMS正向模表面結構之SEM圖及其接觸角。 62 圖4-14、 PDMS平板於室溫之接觸角回復圖 62 圖4-15、 PDMS負向模於室溫之接觸角回復圖 62 圖4-16、 PDMS正向模於室溫之接觸角回復圖 63 圖4-17、 PDMS平板於150℃烘箱之接觸角回復圖 63 圖4-18、 PDMS負向模於150℃烘箱之接觸角回復圖 63 圖4-19、 PDMS正向模於150℃烘箱之接觸角回復圖 64 圖4-20、 PDMS負向模於180℃烘箱之接觸角回復圖 64 圖4-21、 PDMS正向模於180℃烘箱之接觸角回復圖 64 圖4-22、 接觸角回復率比較圖 65 圖4-23、 AR=1及L=130μm之PDMS圓柱陣列。(a) 剖面圖 (b) 接觸角量測圖 66 圖4-24、 AR=1及L=260μm之PDMS圓柱剖面圖及其接觸角。 66 圖4-25、 AR=3.5及L=260μm之PDMS圓柱及其接觸角。(a) 剖面圖 (b) 圓柱缺陷部分之剖面圖 67 圖4-26、 液低於高處滾落之接觸角。(a) AR=3.5及L=260μm (b) AR=1及L=260μm之圓柱 68 圖4-27、 AR=2.3及L=100μm之PDMS圓柱陣列。(a) 結構剖面圖 (b) 接觸角量測圖 68 圖4-28、 AR=5.1及L=230μm之PDMS圓柱及其接觸角。(a) 剖面圖 (b) 俯視圖 69 圖4-29、 液滴於高處滾落之接觸角。 69 圖4-30、 AR=5.1及L=230μm之PDMS圓柱陣列於室溫之接觸角回復圖。 70 圖4-31、 AR=5.1及L=230μm之PDMS圓柱陣列於180℃之接觸角回復圖。 70

    [1] W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, vol. 202, pp. 1-8, May 1997.
    [2] D. Oner and T. J. McCarthy, "Ultrahydrophobic surfaces. Effects of topography length scales on wettability," Langmuir, vol. 16, pp. 7777-7782, Oct 2000.
    [3] A. Nakajima, K. Hashimoto, and T. Watanabe, "Recent studies on super-hydrophobic films," Monatshefte Fur Chemie, vol. 132, pp. 31-41, Jan 2001.
    [4] R. N. Wenzel, "SURFACE ROUGHNESS AND CONTACT ANGLE," Journal of Physical and Colloid Chemistry, vol. 53, pp. 1466-1467, 1949.
    [5] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936 1936.
    [6] A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944.
    [7] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, "Super-water-repellent fractal surfaces," Langmuir, vol. 12, pp. 2125-2127, May 1996.
    [8] S. Wang and L. Jiang, "Definition of superhydrophobic states," Advanced Materials, vol. 19, pp. 3423-3424, Nov 2007.
    [9] M. L. Ma and R. M. Hill, "Superhydrophobic surfaces," Current Opinion in Colloid & Interface Science, vol. 11, pp. 193-202, Oct 2006.
    [10] G. Zhang, D. Y. Wang, Z. Z. Gu, and H. Mohwald, "Fabrication of superhydrophobic surfaces from binary colloidal assembly," Langmuir, vol. 21, pp. 9143-9148, Sep 27 2005.
    [11] Y. Liu, X. Chen, and J. H. Xin, "Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach," Nanotechnology, vol. 17, pp. 3259-3263, 14 2006.
    [12] H. J. Tsai and Y. L. Lee, "Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces," Langmuir, vol. 23, pp. 12687-12692, Dec 2007.
    [13] E. Hosono, S. Fujihara, I. Honma, and H. S. Zhou, "Superhydrophobic perpendicular nanopin film by the bottom-up process," Journal of the American Chemical Society, vol. 127, pp. 13458-13459, Oct 2005.
    [14] S. T. Wang, L. Feng, and L. Jiang, "One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces," Advanced Materials, vol. 18, pp. 767-+, Mar 17 2006.
    [15] Z. Cao, D. Xiao, L. Kang, Z. Wang, S. Zhang, Y. Ma, et al., "Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with Ag(NH(3))(2) OH," Chemical Communications, pp. 2692-2694, 2008 2008.
    [16] J.-M. Lim, G.-R. Yi, J. H. Moon, C.-J. Heo, and S.-M. Yang, "Superhydrophobic films of electrospun fibers with multiple-scale surface morphology," Langmuir, vol. 23, pp. 7981-7989, Jul 17 2007.
    [17] Z. Ying, Z. Jingchang, Z. Yongmei, H. Zhongbing, F. Lin, and J. Lei, "Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments," Advanced Functional Materials, vol. 16, pp. 568-74, 3 March 2006.
    [18] S. Sarkar, A. Chunder, W. Fei, L. An, and L. Zhai, "Superhydrophobic mats of polymer-derived ceramic fibers," Journal of the American Ceramic Society, vol. 91, pp. 2751-2755, Aug 2008.
    [19] H. S. Khoo and F. G. Tseng, "Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures," Nanotechnology, vol. 19, pp. 345603 (9 pp.)-345603 (9 pp.), 27 Aug. 2008.
    [20] X. J. Huang, J. H. Lee, J. W. Lee, J. B. Yoon, and Y. K. Choi, "A one-step route to a perfectly ordered wafer-scale microbowl array for size-dependent superhydrophobicity," Small, vol. 4, pp. 211-216, Feb 2008.
    [21] A. Pozzato, S. Dal Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, et al., "Superhydrophobic surfaces fabricated by nanoimprint lithography," Microelectronic Engineering, vol. 83, pp. 884-888, Apr-Sep 2006.
    [22] B. Liu, Y. He, Y. Fan, and X. Wang, "Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting," Macromolecular Rapid Communications, vol. 27, pp. 1859-1864, Nov 1 2006.
    [23] X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, et al., "The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography," Advanced Materials, vol. 19, pp. 2213-+, Sep 3 2007.
    [24] N. J. Shirtcliffe, G. McHale, M. I. Newton, and C. C. Perry, "Intrinsically superhydrophobic organosilica sol-gel foams," Langmuir, vol. 19, pp. 5626-5631, Jul 8 2003.
    [25] S. Yang, S. Chen, Y. Tian, C. Feng, and L. Chen, "Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process," Chemistry of Materials, vol. 20, pp. 1233-1235, Feb 26 2008.
    [26] Y. T. Peng, K. F. Lo, and Y. J. Juang, "Constructing a Superhydrophobic Surface on Polydimethylsiloxane via Spin Coating and Vapor-Liquid Sol-Gel Process," Langmuir, vol. 26, pp. 5167-5171, Apr 2010.
    [27] T. L. Gao, X. S. Zhang, G. Y. Sun, and H. X. Zhang, "Fabrication of superhydrophobic wide-band ldquoBlack Siliconrdquo by deep reactive ion etching," Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS 2011), pp. 209-212, 2011 2011.
    [28] H. Ji, J. Yang, Z. Wu, J. Hu, H. Song, L. Li, et al., "A simple approach to fabricate sticky superhydrophobic polystyrene surfaces," Journal of Adhesion Science and Technology, vol. 27, pp. 2296-2303, Nov 1 2013.
    [29] B. Cortese, S. D'Amone, M. Manca, I. Viola, R. Cingolani, and G. Gigli, "Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces," Langmuir, vol. 24, pp. 2712-2718, Mar 18 2008.
    [30] S. E. Lee, D. Lee, P. Lee, S. H. Ko, S. S. Lee, and S. U. Hong, "Flexible Superhydrophobic Polymeric Surfaces with Micro-/Nanohybrid Structures Using Black Silicon," Macromolecular Materials and Engineering, vol. 298, pp. 311-317, Mar 2013.
    [31] J. Yong, F. Chen, Q. Yang, D. Zhang, H. Bian, G. Du, et al., "Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays," Langmuir, vol. 29, pp. 3274-3279, Mar 12 2013.
    [32] E. P. T. de Givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier, S. Geribaldi, et al., "Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers," Langmuir, vol. 25, pp. 6448-6453, Jun 2 2009.
    [33] J. L. Zhang, X. Y. Lu, W. H. Huang, and Y. C. Han, "Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide," Macromolecular Rapid Communications, vol. 26, pp. 477-480, Mar 2005.
    [34] J. Lee, B. He, and N. A. Patankar, "A roughness-based wettability switching membrane device for hydrophobic surfaces," Journal of Micromechanics and Microengineering, vol. 15, pp. 591-600, March 2005.
    [35] T. L. Sun, G. J. Wang, L. Feng, B. Q. Liu, Y. M. Ma, L. Jiang, et al., "Reversible switching between superhydrophilicity and superhydrophobicity," Angewandte Chemie-International Edition, vol. 43, pp. 357-360, 2004 2004.
    [36] D. T. Eddington, J. P. Puccinelli, and D. J. Beebe, "Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane," Sensors and Actuators B-Chemical, vol. 114, pp. 170-172, Mar 30 2006.
    [37] N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, and P. Roach, "Porous materials show superhydrophobic to superhydrophilic switching," Chemical Communications, pp. 3135-3137, 2005 2005.
    [38] N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, and P. Roach, "Superhydrophobic to superhydrophilic transitions of sol-gel films for temperature, alcohol or surfactant measurement," Materials Chemistry and Physics, vol. 103, pp. 112-117, May 15 2007.
    [39] F. Xia, L. Feng, S. T. Wang, T. L. Sun, W. L. Song, W. H. Jiang, et al., "Dual-responsive surfaces that switch superhydrophilicity and superhydrophobicity," Advanced Materials, vol. 18, pp. 432-432, 2006.
    [40] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, "On the aging of oxygen plasma-treated polydimethylsiloxane surfaces," Journal of Colloid and Interface Science, vol. 137, pp. 11-24, Jun 1990.
    [41] M. K. Chaudhury and G. M. Whitesides, "Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives," Langmuir, vol. 7, pp. 1013-1025, May 1991.
    [42] G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck, and G. M. Whitesides, "Monolayers on disordered substrates self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly(dimethylsiloxane)," Macromolecules, vol. 26, pp. 5870-5875, Oct 1993.
    [43] J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, "Components for integrated poly(dimethylsiloxane) microfluidic systems," Electrophoresis, vol. 23, pp. 3461-3473, Oct 2002.
    [44] H. Makamba, J. H. Kim, K. Lim, N. Park, and J. H. Hahn, "Surface modification of poly(dimethylsiloxane) microchannels," Electrophoresis, vol. 24, pp. 3607-3619, Nov 2003.
    [45] M. Kim, K. Kim, N. Y. Lee, K. Shin, and Y. S. Kim, "A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold," Chemical Communications, pp. 2237-2239, Jun 14 2007.
    [46] J. T. Han, S. Y. Kim, J. S. Woo, and G.-W. Lee, "Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution," Advanced Materials, vol. 20, pp. 3724-+, Oct 2 2008.
    [47] A. Chunder, K. Etcheverry, G. Londe, H. J. Cho, and L. Zhai, "Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 333, pp. 187-193, Feb 5 2009.
    [48] F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, et al., "Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices," Microelectronic Engineering, vol. 87, pp. 798-801, May-Aug 2010.
    [49] B. Balakrisnan, S. Patil, and E. Smela, "Patterning PDMS using a combination of wet and dry etching," Journal of Micromechanics and Microengineering, vol. 19, Apr 2009.
    [50] W. Y. Zhang, G. S. Ferguson, and S. Tatic-Lucic, "Elastomer-supported cold welding for room temperature wafer-level bonding," 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest (IEEE Cat. No.04CH37517), pp. 741-4, 2004 2004.

    下載圖示 校內:2016-07-14公開
    校外:2016-07-14公開
    QR CODE