簡易檢索 / 詳目顯示

研究生: 鄭聰信
Cheng, Tsung-Hsin
論文名稱: 橋墩沖刷保護機構之現地實驗與探討
Field experimental study of scour countermeasure at bridge pier
指導教授: 黃進坤
Hwang, Jinn-Kuen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 99
中文關鍵詞: 流速衰減率橋墩沖刷筐網結構物
外文關鍵詞: Pier scour, velocity-decrease rate, Porous structure
相關次數: 點閱:132下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在台灣河川坡陡流急的特殊地形及南北向主要交通系統下,構築於河道中的橋墩、橋台等結構物數量眾多,而這些水中結構物每於颱洪暴雨期間在河川水位迅速漲落下,常於橋墩底床發生劇烈淘刷導致橋墩基礎受侵蝕,造成橋墩裸露的危險。
    對於橋墩沖刷防制工法的研究上,前人多以實驗室之試驗渠道進行試驗研究,鮮少於實際河道中做過相關試驗以瞭解實際設置的可行性及防制成效之研究,讓許多有別於現行常用之保護工法的研究止於理論。本研究致力於實際河道中設置筐網結構物保護工,以探討在各種不同筐網型式、設置距離及筐網結構物排列方式下對保護橋墩沖刷之影響,藉由改變筐網設置距離、筐網型式與排列方式的不同,作以下的討論: (1) 筐網設置距離與排列方式之探討、(2) 筐網設置距離與排列方式對流速衰減率之探討、(3) 筐網製作型式不同對流速衰減率之探討、(4) 筐網保護機構於其他河道之實驗結果,再根據筐網結構物不同的設置條件,找出其對橋墩沖刷防制的最佳佈置方式。
    根據實驗結果得知,筐網結構物設置距離橋墩1倍橋墩直徑處、筐網型式為雙層及排列方式為倒三角形時,對水流流速衰減率可達70%以上,使到達橋墩前流速所產生之向下水流強度衰減,及橋墩兩側因筐網導流及遮蔽效應使馬蹄型渦流強度減弱,進而對橋墩周圍之底床泥砂起動能力不足,使橋墩周圍之局部沖刷量最小,防制效果最佳。

    Because of the rapid flow of rivers which have steep slope and the east-west traffic system in Taiwan, there are numerous structures built in river course, such as bridge and abutment. These structures are usually in the danger of being destroyed since water elevation rise and fall fast during the storm period. For instance, the bridge pier will be imperiled when bed scour develops rapidly and causes pier to be exposed, after a flood goes by.
    Previous study of pier scour countermeasure used to using physical model for simulation in laboratory channel, and seldom performed field experiment in river to figure out the feasibility and the effect of scour countermeasure. Therefore, some researches of new countermeasures, which are different from present common ones, were only on theoretical step.
    The major work of present study was to investigate the influence of porous structure used to prevent scour by changing its distance from pier, formation of structure and arrangement. Some subjects were studied as follows: (1) the distance from pier and arrangement of a porous structure group; (2) relation between the above-mentioned two parameters and the velocity-decrease rate; (3) the relation between the porous structure formation and velocity-decrease rate; (4) the other results of experiment performed in other river. According to field experimental result, the best disposition for resisting pier scour was figured out.
    From the results, velocity-decrease rate reached and surpassed 70% when distance from pier was one time the diameter of pier, the structure formation was double layer, and the group arrangement was an inverted triangle form. In this situation, the down-flow strength was decreased in front of the pier. The strength of horseshoe vortex around pier was also diminished because of the flow diversion and shelter effect of porous structure, therefore, the flow was insufficient for moving sediment of bed around bridge pier. The scour depth was smallest in this case, in another word; the protective effect was the best.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 照片目錄 XI 符號說明 XIV 第一章 前言 1 1-1 研究背景與動機 1 1-2 橋墩沖刷防制現況及前人研究 5 1-2-1 橋墩沖刷之特性 5 1-2-2 現有防制橋墩沖刷之保護工法 9 1-3 本文架構 12 第二章 筐網對橋墩沖刷之保護機制 13 2-1 橋墩周圍之局部沖刷機制 13 2-2 筐網保護機構之原理與設置說明 16 第三章 現地實驗設備、內容與步驟 19 3-1 實驗場地背景 19 3-2 實驗設備 19 3-3 實驗內容 25 3-3-1 筐網排列方式與設置距離 26 3-3-2 不同筐網型式對流速衰減之影響 31 3-4 實驗步驟 33 3-4-1 實驗準備 33 3-4-2 實驗過程 34 第四章 實驗結果與討論 35 4-1 橋墩未受保護之沖刷狀態 35 4-2 橋墩受不同條件保護下之沖刷狀態 37 4-2-1 筐網設置距離與排列方式之探討 37 4-2-1-1 實驗觀察 37 4-2-1-2 保護效果 38 4-2-2 筐網設置距離對流速衰減率之探討 40 4-2-2-1 實驗觀察 40 4-2-2-2 保護效果 41 4-2-3 不同筐網型式對流速衰減率之探討 42 4-2-3-1 實驗觀察 42 4-2-3-2 保護效果 42 4-3 筐網保護機構於白水溪河道之實驗 43 4-4 綜合討論 46 第五章 結論與建議 82 5-1 結論 82 5-2 建議 84 參考文獻 85 附錄 89 表目錄 表3-1 筐網結構物佈置條件 26 表3-2 不同筐網設置條件之流速衰減率 32 表4-1 未受筐網結構物保護之橋墩沖刷歷程紀錄 36 表4-2 不同筐網排列方式及距離變化對橋墩沖刷的保護效果 39 表4-3 不同筐網設置條件之流速衰減率 43 表4-4 白水溪實驗橋墩之沖刷深度表 45 附表一 雙層筐網以倒三角形排列現地實測紀錄表(L=1D) 89 附表二 雙層筐網以倒三角形排列現地實測紀錄表(L=1.5D) 90 附表三 雙層筐網以倒三角形排列現地實測紀錄表(L=2D) 90 附表四 雙層筐網以倒三角形排列現地實測紀錄表(L=3D) 91 附表五 單層筐網以倒三角行排列現地實測紀錄表(L=1D) 91 附表六 單層筐網以倒三角行排列現地實測紀錄表(L=1.5D) 92 附表七 單層筐網以倒三角行排列現地實測紀錄表(L=3D) 92 附表八 雙層筐網以正三角形排列現地實測紀錄表(L=1D) 93 附表九 雙層筐網以正三角形排列現地實測紀錄表(L=2D) 94 圖目錄 圖1-1 橋墩沖刷型態分類 6 圖1-2 橋墩局部沖刷深度、流速與時間關係圖 8 圖2-1 橋墩周圍局部沖刷之水流示意圖 15 圖3-1 橋墩刻劃示意圖 21 圖3-2 單、雙層筐網型式示意圖 22 圖3-3 倒三角形雙層筐網佈設平面圖 28 圖3-4 正三角形雙層筐網佈設平面圖 29 圖3-5 倒三角形單層筐網佈設平面圖 30 圖4-1 橋墩佈設相關位置平面圖 48 圖4-2(a) 雙層筐網以正、倒三角形佈設時橋墩前(0°)之沖刷歷程變化 49 圖4-2(b) 雙層筐網以正、倒三角形佈設時橋墩前( )之沖刷歷程變化 50 圖4-2(c) 雙層筐網以正、倒三角形佈設時橋墩前(90°)之沖刷歷程變化 51 圖4-2(d) 雙層筐網以正、倒三角形佈設時橋墩前(-90°)之沖刷歷程變化 52 圖4-3(a) 橋墩沖刷減少率與設置距離關係圖 53 圖4-3(b) 橋墩沖刷減少率與設置距離關係圖 54 圖4-4(a) 單層筐網以倒三角形佈設時橋墩前(0°)之沖刷歷程變化 55 圖4-4(b) 單層筐網以倒三角形佈設時橋墩前( )之沖刷歷程變化 56 圖4-4(c) 單層筐網以倒三角形佈設時橋墩前(90°)之沖刷歷程變化 57 圖4-4(d) 單層筐網以倒三角形佈設時橋墩前(-90°)之沖刷歷程變化 58 圖4-5單層筐網沿程距離之流速變化圖 59 圖4-6雙層筐網沿程距離之流速變化圖 60 圖4-7筐網沿程距離之流速變化圖 61 圖4-8 筐網後流速衰減率與橋墩沖刷減少率及設置距離關係圖(Fn) 62 圖4-9橋墩前流速衰減率與橋墩沖刷減少率及設置距離關係圖(Fp) 63 圖4-10(a) 相同排列方式於不同筐網型式下橋墩前(0°)沖刷歷程 64 圖4-10(b) 相同排列方式於不同筐網型式下橋墩前( )沖刷歷程 65 圖4-10(c) 相同排列方式於不同筐網型式下橋墩前(90°)沖刷歷程 66 圖4-10(d) 相同排列方式於不同筐網型式下橋墩前(-90°)沖刷歷程 67 照片目錄 照片3-1 現地實驗用壓克力橋墩(D=40公分)……………….…………21 照片3-2 實驗用雙層筐網內層(d2=6公分)……………………….….....23 照片3-3 現地實驗用雙層筐網(d1=20公分)……………………….…...23 照片3-4 現地實驗用單層筐網(d=20公分)……………………….…....24 照片4-1 現場佈設兩座壓克力橋墩及筐網結構物情形 68 照片4-2 未設置筐網保護之橋墩前方河床沖刷情形 68 照片4-3 橋墩前(0°)之沖刷情形 69 照片4-4 橋墩後( )之沖刷情形 69 照片4-5 橋墩左(90°)之沖刷情形 70 照片4-6 橋墩右(-90°)之沖刷情形 70 照片4-7 筐網結構物佈設距離橋墩增大後泥砂起動情形 71 照片4-8 量測筐網結構物前方之流速 71 照片4-9 量測筐網結構物後方之流速 72 照片4-10 量測橋墩前方之流速 72 照片4-11 量測橋墩後方之流速 73 照片4-12 倒三角形排列之雙層筐網結構物設置圖(L=1D) 73 照片4-13 正三角形排列之雙層筐網結構物設置圖(L=1D) 74 照片4-14 倒三角形排列之雙層筐網結構物設置圖(L=2D) 74 照片4-15 倒三角形排列之雙層筐網結構物設置圖(L=3D) 75 照片4-16 鋼管橋墩於工廠施工情形 75 照片4-17 直徑40公分、12公尺長鋼管橋墩 76 照片4-18 鋼管橋墩現場吊裝情形 76 照片4-19 鋼管橋墩以打樁機夯打至河床下7公尺 77 照片4-20 鋼管橋墩打設前先行定位 77 照片4-21 筐網結構物固定桿打設 78 照片4-22 鋼管橋墩上方設置觀測平台 78 照片4-23 鋼管橋墩上游之筐網結構物 79 照片4-24 筐網結構物保護沖刷現況 79 照片4-25 95年6月份之豪大雨將筐網結構物淹沒現況 80 照片4-26 筐網結構物無法承受水流曳引力而遭破壞現況 80 照片4-27 筐網結構物無法承受水流曳引力而遭破壞現況 81 附錄照片A 二維流速儀 95 附錄照片B 八掌溪下潭河段實驗現地 95 附錄照片C 白水溪河段實驗現地 96 附錄照片D 白水溪河段於豪雨時水位暴漲2~5公尺 96 附錄照片E 設置於白水溪河段之橋墩觀測平台上觀測筐網保護情況 97 附錄照片F 白水溪河段無筐網保護橋墩退水後之沖刷坑 97 附錄照片G 白水溪河段有筐網保護橋墩退水後之沖刷坑 98 附錄照片H 白水溪河段有、無筐網保護橋墩退水後之沖刷坑比較 98 附錄照片I 白水溪河段筐網結構物易附著漂流物 99

    1. 吳建民 (1991),「泥沙運移學」,中國土木水利工程學會。
    2. 吳虹邑 (2005),「筐網結構物對橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    3. 林達志 (2003),「潛沒式跌水坑對橋墩沖刷影響暨保護工法之初步研究」,國立成功大學水利及海洋工程研究所碩士論文。
    4. 林呈 (2004),「河川橋樑之橋墩(台)沖刷保護工法之研究(第二分年期中報告)」,交通部公路總局專案研究計畫。
    5. 林呈(1998),「本省西部重要河川橋樑橋基災害分析與橋基保護工法資料庫系統之建立」,交通部運輸研究所專題研究計畫成果報告。
    6. 張忠潔 (2002),「跌水沖刷與橋墩沖刷互動關係試驗之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    7. 莊智盛 (2004),「成功人工水草對自由跌水下游橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    8. 黃進坤 (2005),「沖積河川上課講義」,成功大學水利所。
    9. 黃進坤 (2006),「橋墩保護新工法之研究」,台灣公路工程,第32卷第8期,pp.39-44。
    10. 黃進坤、石鎮源(2002),「隔板對泥沙導流形成底床局部沖淤之試驗研究」,第七屆海峽兩岸水利科技交流研討會。
    11. 許澤善、吳瑞龍(2003),「兼具固基與固床效應之橋梁雙排樁強化土圍堰工法」,台灣公路工程,第30卷第1期,pp.12-22。
    12. 張文鎰(2002),「圓形橋墩局部沖刷之模擬與試驗驗證」,國立台灣大
    13. 陳志弘 (2003),「圓形渠道之單柱與雙柱之沖刷試驗」,國立成功大學水利及海洋工程研究所碩士論文。
    14. 陳右典 (2005),「成功人工水草對彎道橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    15. 蔡長泰(2003),「跨河橋梁水文水理考量準則及注意事項」,交通部台灣區國道新建工程局。
    16. 經濟部水利署(2006),「八掌溪河系河川情勢調查計畫總報告」,經濟部水利署第五河川局。
    17. Baker, C.J. (1980), “Theoretical Approach to Prediction of Local Scour Around Bridge Piers,” Journal of Hydraulic Research, Vol.18, No.1, pp.1-12.
    18. Breusers, H.N.C. and Raudkivi, A.J. (1991), “Scouring,” Hydraulic Structures Design Manual, pp.51-99.
    19. Chiew, Y.M. and Melville, B.W. (1987), “Local Scour Around Bridge Piers,” Journal of Hydraulic Research, Vol.25, No.1, pp.15-26.
    20. Chiew, Y.M. (1992), “Scour Protection at piers,” Journal of Hydraulic Engineering, ASCE, Vol.118, No.9, pp.1260-1269.
    21. Chiew, Y.M. (2004), “Local Scour and Riprap Stability at Bridge Piers in a Degrading Channel,” Journal of Hydraulic Engineering, ASCE, Vol. 130, No.3, pp.218-226.
    22. Huang, C-K, Tang, C-J, and Kuo, T-Y (2005), “Use Of Surface Guide Panels As Pier Scour Countermeasures,” International Journal of Sediment Research, Vol.20, No.2, pp.119-130.
    23. Laursen E.M. (1960), “Scour at Bridge Crossings,” Journal of the Hydraulic Division, ASCE, Vol.86, No.Hy2, February, pp.39-54.
    24. Laursen, E.M. (1962), “Scour at Bridge Crossings,” Journal of the Hydraulic Division, ASCE, Vol.86, No.Hy2, pp.39-54.
    25. Lauchlan, C.S. and Melville, B.W. (2001), “Riprap Protection at Bridge Piers,” Journal of Hydraulic Engineering, ASCE, Vol.127, No.5,May, pp.412-418.
    26. Melville, B.W. and Raudkivi, A.J. (1977), “Flow Characteristics in Local Scour at Bridge Piers,” Journal of Hydraulic Research, Vol.15, No.4, pp.373-380.
    27. Melville, B.M. and Sutherland, A.J. (1988), “Design Method for Local Scour at Bridge Pier,” Journal of Hydraulic Engineering, ASCE, Vol.114, No.10, pp.1210-1226.
    28. Melville, B.W., and Hadfield, A.C. (1999), “Use of Sacrifical Piles as Pier Scour Countermeasures,” Journal of Hydraulic Engineering, ASCE, Vol 125, No.11, pp.1221-1224.
    29. Melville, B.W., and Coleman, S.E. (2000), “Bridge Scour,” Water Resourcrs Publications, LLC.
    30. Oliveto, G., and Hager, W.H. (2005), “Further Results to Time-Dependent Local Scour at Bridge Elements,” Journal of Hydraulic Engineering, ASCE, Vol.131, No.2, pp.97-105.
    31. Raudkivi, A.j. , and Ettema, R. (1977), “Effect of Sediment Gradation on Clear Water Scour,” Journal of the Hydraulic Division, ASCE, Vol.103, No.10, pp.97-105.
    32. Raudkivi, A.j. and Ettema, R. (1983), “Clear-Water Scour at Cylindrical Piers,” Journal of Hydraulic Engineering, ASCE, Vol.109, No.3, pp. 338-349.
    33. Sheppard, D.M., Odeh, M., and Glasser, T. (2004), “Large Scale Clear-Water Local Pier Scour Experiments,” Journal of Hydraulic Engineering, ASCE, Vol.130, pp.957-963.
    34. Yoon, T.H. (2005), “Wire Gabion for Protecting Bridge Piers,” Journal of Hydraulic Engineering, ASCE, Vol.131, pp.942-949.

    下載圖示 校內:2008-08-15公開
    校外:2008-08-15公開
    QR CODE