簡易檢索 / 詳目顯示

研究生: 陳溦嬋
Chen, Wei-Chan
論文名稱: 基於優先權的智慧電網通訊網路路由演算法之研究
Priority Based Routing Protocol for Smart Grid Communication Networks
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 82
中文關鍵詞: 智慧電網通訊網路路由協定
外文關鍵詞: Smart grid, Smart utility network, Routing protocol
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在智慧電網中需要透過許多不同的應用程式來監控電網的穩定性以及各家用戶使用電力的資料,然後再透過通訊網路中的智慧電表將資料回傳給電廠,而這些資料封包大致上分成突發事件所引起的緊急封包以及週期性回報用電資料的封包,其中緊急數據封包通常用來警示電廠以避免因為負載超過負荷導致電網發生斷電,為了支援電網及時監測,緊急的數據封包必須盡快回傳給電廠。在這篇論文中提出了一種基於優先權的地理繞境路由協議並結合鏈路估測的路由,緊急封包具有較高的優先權以確保盡快的回傳給電廠。在提出的路由協議中,當路徑擁擠時時,每個智慧電表都會及時提供了其他的替代路線,此舉不但減少了重新尋找新路徑的延遲時間,也降低了在更新路由訊息時所使用的額外的控制封包的數量,大幅節省網路的頻寬資源。此外, 為了支援智慧電網中雙向通訊的需求,提出的路由協議中也建立雙向通訊的線路,在智慧電表將資料回傳給電廠的同時,也記錄了電廠到智慧電表的路徑。模擬的結果顯示,提出的路由協議在不同資料負載和網絡規模的情況下具有穩定性。

    In smart grid communication networks the urgent data packets usually alert the utility to avoid the grid disruption when a critical event occurs. To support real-time monitoring of the power grid, the urgent data have to be transmitted as soon as possible. In this thesis we proposed a priority-based geographical routing protocol combined with weighted link metric to perform data packets routing. Data is routed based on the packet type. The emergency data has higher priority to route packet to ensure the delivery to data collector. When choosing the next hop, the meter that is closer to the data collector and higher link quality is selected. In proposed protocol each meter provides the alternative route when link failure. It reduces the delay time for searching a new route and the route information is updated immediately with small control overhead. The two-way communication routes are established both downstream flows from data collector to smart meters and upstream flows from smart meters to data collector during data forwarding. The simulation results show that proposed protocol is stable under different traffic load and network size.

    摘要 iv Abstract v Acknowledgements vii Table of Contents ix List of Figures xi List of Tables xvii Abbreviations xix Symbols xxi Dedication xxiii 1 Introduction 1 1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Works 5 2.1 Concept of Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Network Architecture of Smart Utility Networks . . . . . . . . . . . . . . . . 7 2.2.1 Home Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Neighborhood Area Network . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Related Standard for Smart Utility Networks . . . . . . . . . . . . . . . . . . 9 2.3.1 IEEE 802.11s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 IEEE 802.15.4g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Existing Routing Protocol for Smart Utility Networks . . . . . . . . . . . . . 12 2.4.1 IEEE 802.11s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 Ad hoc on Demand Distance Vector Routing Protocol . . . . . . . . 15 2.4.3 Improved Reliable Routing via IEEE 802.11s . . . . . . . . . . . . . 16 2.4.4 Timer-based Reserve-Path Multiple Gateways Routing Scheme . . . 17 2.4.5 RPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.6 Geographical Routing Protocol . . . . . . . . . . . . . . . . . . . . . 19 2.5 Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Priority Based Routing Algorithm 23 3.1 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Priority-Based Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 Data Structure Definition . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Data Forwarding Stage . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Link Metric Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 Level of Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Progress of Routing Distance of Node . . . . . . . . . . . . . . . . . 41 3.3.3 Packet Reception Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.4 Weighted Function of Link Metric . . . . . . . . . . . . . . . . . . . 43 3.4 Delay Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.1 Queueing Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 Contention Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Simulation Results 57 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 PBRP Simulation with NS-3 . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Effects of Weights for Different Factors . . . . . . . . . . . . . . . . . . . . 62 4.3 Simulation Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Comparison of Routes for Different Routing Protocols . . . . . . . . . . . . 71 5 Conclusion and Future Work 77 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Bibliography 79

    [1] A. Banchs, “Analysis of the distribution of the backoff delay in 802.11 DCF: a step towards end-to-end delay guarantees in WLANs,” Quality of Service in the Emerging Networking Panorama, Springer Berlin Heidelberg, 2004, pp. 54-63.
    [2] B.I. Marks, “State Probabilities of M/M/1 Priority Queues,” Operat Res, vol. 21, 1973.
    [3] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks, in Proc. ACM/IEEE International conference on Mobile Computing and Networking, Boston, MA, Aug. 2000, pp. 243-254.
    [4] C. E. Perkins, E. M. Royer, and S.R. Das, “Ad-Hoc On-Demand Distance Vector (AODV) Routing,” IETF Mobile Ad Hoc Networks Working Group, IETF RFC 3561, 2003.
    [5] C. Sarr, C. Chaudet, G. Chelius, and I. G. Lassous, “Bandwidth estimation for IEEE 802.11-based ad hoc networks,” Mobile Computing, IEEE Transactions on, 2008, pp. 1228-1241.
    [6] Dept. of Energy, Communication requirements of smart grid technologies, 2010.
    [7] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput Path Metric for Multi-Hop Wireless Routing. In ACM MobiCom03, San Diego, California, Sept. 2003.
    [8] D. Wang, Z. Tao, J. Zhang and A. A. Abouzeid, RPL based Routing for Advanced Metering Infrastructure in Smart Grid, In Proceedings of IEEE International Conference on Communications Workshops (ICC 2010), May 2010, pp. 1-6.
    [9] H. Gharavi and B. Hu, “Multigate Communication Network for Smart Grid,” In Proceedings of the IEEE vol. 99, pp. 1028-1045, June 2011.
    [10] H. Zhai, Y. Kwon, and Y. Fang, “Performance analysis of IEEE 802.11 MAC protocols in wireless LANs,” Wireless communications and mobile computing, 2004, pp. 917-931.
    [11] IEEE Standard for Local and Metropolitan Area Networks-Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks, IEEE Standard 802.15.4g, IEEE Computer Society, Apr. 2012.
    [12] IEEE Standard for Local and Metropolitan Area Networks-Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard 802.15.4, IEEE Computer Society, Sep. 2011.
    [13] IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 10: Mesh Networking, IEEE Standard 802.11s, IEEE Computer Society, Sep. 2011.
    [14] I. F. Akyildiz and X. Wang, “A Survey on Wireless Mesh Networks,” IEEE Communication Magazine, vol. 43, Sep. 2005.
    [15] G. Iyer, P. Agrawal, E. Monnerie, and R. S. Cardozo, “Performance analysis of wireless mesh routing protocols for smart utility networks, IEEE International Conference on Smart Grid Communications, Oct. 2011, pp. 114-119.
    [16] J.-S. Jung, K.-W. Lim, J.-B. Kim, and S.-Y. Lee, “Improving IEEE 802.11s Wireless Mesh Networks for Reliable Routing in the Smart Grid Infrastructure,” In IEEE International Conference on Communications Workshios (ICC), 2011, pp. 1-5.
    [17] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari, “Energy Efficient Forwarding Strategies for Geographic Routing in Wireless Sensor Networks,” In ACM Sensys’04, Baltimore, MD, Nov. 2004.
    [18] K. Zeng, K. Ren, W. Lou, and P. J. Moran, “Energy Aware Efficient Geographic Routing in Lossy Wireless Sensor Networks with Environmental Energy Supply,” Wireless Networks (WINET), 2007, pp. 477-486.
    [19] L. Sang, A. Arora, and H. Zhang, “On Exploiting Asymmetric Wireless Links via One-Way Estimation, In Proceedings of 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 11-21.
    [20] NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0, Office of the National Coordinator for Smart Grid Interoperability. [Online]. Available: http://www.nist.gov/public_affairs/releases/upload/smartgrid interoperability final.pdf
    [21] N. Saputro, K. Akkaya, and S. Uludag, “A Survey of Routing Protocols for Smart Grid Communications, Computer Networks, vol. 56, no. 11, Jul. 2012, pp. 2742-2771.
    [22] NIST Smart Grid Standards, National Institute of Standards and Technology Working Draft Proposed Standard, Rev. Rlease 1.0, 2009.
    [23] Ns-3.8, “The ns-3 network simulator,” http://www.nsnam.org, May 2010.
    [24] P. Raptis, V. Vitsas, K. Paparrizos, P. Chatzimisios, A. C. Boucouvalas, and P. Adamidis, “Packet delay modeling of IEEE 802.11Wireless LANs,” In Proc. Intl. Conf. on Cyber. Info. Tech. Sys. Apps. CITSA 2005, July, 2005.
    [25] S. Karnouskos, O. Terzidiz, and P. Karnouskos, “An Advanced Metering Infracture for Future Energy Networks,” IEEE NTMS Conference, May 2007.
    [26] S. M. Amin and B. F. Wollenberg, “Toward a Smart Grid: Power Delivery for the 21st Centry, IEEE Power and Energy Magazine, vol. 3, no. 5, Sep. 2005, pp. 34-41.
    [27] T. Iwao, K. Yamada, M. Yura, Y. Nakaya, A. Cardenas, S. Lee, and R. Masuoka, “Dynamic data forwarding in wireless mesh networks,” in First IEEE International Conference on Smart Grid Communications, 2010, pp. 385-390.
    [28] T.Winter, P. Thubert, and R. A. Abouzeid, “RPL: IPv6 Routing Protocol for Low Power and Lossy Networks, draft-ieft-rollrpl-16, IETF ROLL Working Group, Dec. 2010.
    [29] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and Challenges of Wireless Sensor Networks in Smart Grid-A Case Study of Link Quality Assessments in Power Distribution Systems, IEEE transactions on Industrial Electronics, 2010, pp. 1-1.
    [30] W. Sun, X. Yuan, J. Wang, D. Han, and C. Zhang, “Quality of Service Networking for Smart Grid Distribution Monitoring, 2010 First IEEE International Conference on Smart Grid Communication (SmartGridComm 2010).

    無法下載圖示 校內:2018-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE