| 研究生: |
朱鎮國 Chu, Chen-Kuo |
|---|---|
| 論文名稱: |
應用於發射機系統之功率放大器單晶微波積體電路之研究 Study of Power Amplifier MMICs for Transmitter System Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 功率放大器 、發射機 、單晶微波積體電路 、威爾金森結合/分配器 |
| 外文關鍵詞: | transmitter, MMIC, power amplifier, Wilkinson power combiner/ divider |
| 相關次數: | 點閱:93 下載:27 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於無線通訊系統的快速發展並隨著高頻元件技術的改進,能夠應用於更高頻率的微波積體電路變的非常重要。在射頻前端系統中,功率放大器是發射器的關鍵性零組件,而功率放大器是用來增加功率信號的一種裝置。在本論文中,其製程部分乃採用砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體技術,而在隨後的章節裡,將提出幾種應用於S頻段、C頻段及X頻段之單晶微波積體功率放大器電路。除此之外,由於無線收發器系統對功率放大器的輸出功率要求很高,在毫米波頻段,靠單一功率源和功率放大是很難獲如此高的功率,例如數百瓦特,這時就需要微波功率結合技術。因此,我們亦會提出一個新穎的威爾金森功率分配/結合器。
首先在S 頻段的放大器,我們提出了三種不同偏壓形式之功率放大器。我們設計一個小尺寸,兩級高線性度之功率放大器,輸出功率可達3.5瓦特並且功率效率可達到37.1%。為了於使偏壓較為容易,且不需額外的DC-to-DC的轉換器,所以開發只用單一電壓源的放大器,是未來系統所需要的趨勢,其實用性較一般雙偏壓PHEMT放大器的設計更要來的方便。為了此目的,利用以平台蝕刻的方式取代薄膜電阻並簡化PHEMT功率放大器製程的技術來實踐自偏壓電阻。此外,我們也利用零閘極偏壓(也稱為半增強型)PHEMT製程,完成一個兩瓦放大器。接著為了C頻段之應用,我們也發展了C頻段功率放大器,其輸出功率可達四瓦特。
此外,我們以單晶微波積體電路形式進行了三種不同應用的X頻段功率放大器之設計。首先,我們提出一個兩級9瓦特的功率放大器並且功率效率可達到34%的功率放大器,其面積只有10.92 mm2。其次,為了高增益的應用,我們設計了一個放大器,其特性可以達到最大輸出功率為10瓦特並且擁有40dB的增益。最後,為了功率放大器在能達到高功率及其高效率之應用,我們進一步設計研發可達到12.6瓦特脈波輸出功率並且功率效率可達到52.6%之X頻段功率放大器。
最後,我們在陶瓷基板上實踐一個新的威爾金森寬頻的功率分配/結合器。我們利用兩階的低通電路來取代四分之ㄧ波長的微帶線,已達到寬頻的特性。
With the rapid development of the wireless local area network and the improvement of technology devices, monolithic microwave integrated circuits (MMICs) have become very important because of their high frequency characteristics. In the RF front-end system, a power amplifier which is used to amplify RF signals is the key element in microwave transmitter systems. In this dissertation, the AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs) technology will be adopted. In the subsequent chapters, several power amplifier MMICs covering the frequency range of S-band, C-band, and X-band will be designed and demonstrated. A very high power level is required for the output power in microwave T/R systems. However, it is very difficult to obtain this with the use of the single power amplifier. Therefore, a novel architecture of a broadband Wilkinson power combiner/divider will have to be developed.
For S-band power amplifiers, three types of power amplifiers that use the different bias conditions will be presented. A compact, two-stage 2W MMIC power amplifier with 37.1% PAE and high linearity will also be designed and demonstrated. A single-bias MMIC power amplifier is more attractive to develop especially in cases where additional DC-to-DC converters are not available. Hence, the single-bias MMIC, more often than not, is more convenient than the D-mode PHEMT power amplifier. To prove this, the implementation of an etched mesa layer as the self-bias resistor for a single voltage circuit configuration will have to be demonstrated. This layer replaces the thin film resistor. Second, PHEMT amplifier fabrication processes have to be simplified. Likewise, the use of the zero gate bias configuration (quasi-E mode) PHEMT process will achieve a 2W two-stage power amplifier MMIC. A 2-stage 4.4W PHEMT MMIC high-power amplifier suitable for C-band applications will be presented.
Three types of high-power amplifiers for X-band are proposed. The first is a compact, 9W two-stage X-band power amplifier MMIC with the characteristics of 34% power added efficiency and a chip size of 10.92 mm2. The second, intended for high gain application, is a four-stage 10W X-band PHEMT MMIC high-power amplifier. The characteristics of this MMIC are as follows: a 40 dB small-signal gain, a better than 5/10 dB input/output return loss, and a Psat of 10W. The third is a power amplifier MMIC with a 12.6W pulse saturation output power of 52.6% PAE intended for high output power and high PAE applications.
A novel architecture of a broadband Wilkinson power combiner/divider fabricated on Al substrate will be constructed. With the use of a two-section low-pass network instead of the quarter-wavelength line, the bandwidth will be improved.
[1] Inder Bahl and Prakash Bhartia, Microwave Solid State Circuit Design, John Wiley and Sons, INC., 2003.
[2] George D. Vendelin, Anthony M. Pavio and Ulrich L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley and Sons, INC., 2005.
[3] Ralph Williams, Modern GaAs Processing Methods, Artech House, 2003.
[4] I. D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology, London: Institution of Electrical Engineers, 2001.
[5] Ferril A. Losee, RF Systems Components and Circuits Handbook, Artech House, 2005.
[6] B.S. Virdee, A.S. Virdee, and B.Y. Banyamin, Broadband Microwave Amplifiers, Artech House, 2004.
[7] W. Alan Davis and Krishna K. Agarwal, Radio Frequency Circuit Design, John Wiley & Sons Inc., 2001.
[8] Andrei Grebennikov, RF and Microwave Power Amplifier Design, McGraw-Hill, 2005.
[9] John Rogers and Calvin Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[10] Allen Sweet, MIC& MMIC Amplifier and Oscillator Circuit Design, Artech House, 1990.
[11] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.
[12] Che-Hung Lin, Hou-Kuei Huang, Hong-Zhi Liu, Chen-Kuo Chu, Chi-Chuan Liu, Ching-Hsueh Chang, Chang-Luen Wu, Chian-Sern Chang and Yeong-Her Wang, “A Single Supply, High Linearity 2 W PA MMIC for WLAN Applications Using Quasi-Enhancement Mode PHEMT,” IEEE Microw. Wireless Compon. Lett., vol. 16, no.11, pp 618-620, Nov. 2006.
[13] P. Ladbrooke, MMIC Design: GaAs FETs and HEMTs, Artech House, 1988.
[14] S. C. Cripps, “A theory for the prediction of GaAs FET load-pull power contours,” in IEEE MTT-S Int. Micro. Symp. Dig., 1983, pp. 221-223
[15] S. C. Cripps, RF power amplifiers for wireless communications, Norwood, MA: Artech House Inc., 1999.
[16] F. H. Raab, “Class-F Power Amplifiers with Maximally Flat Waveforms,” IEEE Trans. on Microwave Theory and Tech., vol. 45, No.11, pp. 2007-2012, November 1987.
[17] Sun Jia, Li Bin, M.Y.W. Chia, “Linearised and highly efficient CDMA power amplifier,” Electronics Letters, vol. 35, iss. 10, pp.786 – 787, 13 May 1999
[18] S.A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
[19] David M. Pozar, Microwave Engineering, 3rd ed. John Wiley & Sons Inc., 2005.
[20] Scott A. Wartenberg, RF Measurements of Die and Package, Artech House, 2002.
[21] Tangsheng Chen, Ya Shen, Fuxiao Li, and Xiaojian Chen, " A 9 W C-band MMICs combined power amplifier,” in International Conference on. ICMMT, pp.203 – 206, Sept.2000.
[22] E. Lan, E. Johnson, B. Knappenberger, M. Miller, “InGaP PHEMTs for 3.5GHz W-CDMA applications,” in IEEE MTT-S Int. Micro. Symp. Dig., 2002, Vol. 2, pp.1039-1042.
[23] W.C.B. Peatman, O. Hartin, B. Knappenberger, M.Millerm amd R. Hooper, “Power amplifier for 3.5 GHZ WCDMA applications,” in IEEE GaAs IC Symp. Dig. , 2000, pp71-74
[24] P. Blount, J. Cuggino, and J. McPhee, “A 3.5 GHz fully integrated power amplifier module,” in IEEE GaAs IC Symp. Dig. , 2001, pp.111–114
[25] T. Murae, K. Fujii, and T. Matsuno, “A compact S-band MMIC high power amplifier module,” in IEEE MTT-S Int. Micro. Symp. Dig. , 2000, vol. 2, pp.943 - 946
[26] S. Rockwell, R. Emrick, B. Bosco, S. Franson, M. Miller, E. Johnson,and J. Crowder, “An 8-Watt 3.5 GHz power amplifier with tunable matching,” in IEEE GaAs IC Symp. Dig. , 2002, pp.185–188.
[27] J.J. Komiak, D. Helms, “High-efficiency 20 watt S/C-band power amplifier MMIC,” in IEEE GaAs IC Symp. Dig. , 1992, pp.187–190.
[28] J.J. Komiak, “Octave band eleven watt power amplifier MMIC,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., Dig., 1990, pp.35-38.
[29] L.E. Larson, “RF and Microwave Circuit Design For Wireless Communications”, Artech House, Inc, 1996.
[30] M. Nishida, S. Murai, H. Uda, H. Tominaga, T. Sawai, and A. Ibaraki, “A high efficiency GaAs power amplifier module with a single voltage for digital cellular phone systems,” in IEEE MTT-S Int. Micro. Symp. Dig., 1998, vol.2, pp. 443-446.
[31] E. Glass, J. Huang, M. Martinez, O. Hartin, W. Valentine, M. LaBelle, and E. Lan, “A single supply device technology for wireless applications,” in IEEE GaAs IC Symp. Dig., 1999, pp. 123-126.
[32] Chen-Kuo Chu, Hou-Kuei Huang, Chih-Cheng Wang, Yeong-Her Wang, Chuan Chien Hsu, Wang Wu, Chang-Luen Wu, and Chian-Sern Chang, “A 3.3 V self-biased 2.4-2.5 GHz high linearlity PHEMT MMIC power amplifier,“ in European Solid–State Circuit Conference, 2003, pp. 667-670.
[33] H. Z. Liu, C. C. Wang, Y. H. Wang, C. C. Hsu, C. H. Chang, W. Wu, C. L. Wu, and C. S. Chang, “A Single-Bias C-Band 29 dBm PHEMT MMIC Power Amplifier” in International Conference on Solid State Devices and Materials, 2002, pp.636-637.
[34] B.E. Seow, L. Nguyen, M. Vice, E. Chan, and Y.H. Chow, “A high isolation enhancement mode GaAs PHEMT buffer amplifier” in NCTT Proceedings, 2003, pp. 58-62.
[35] E. Glass, J.H. Huang,; J. Abrokwah, B. Bernhardt, M. Majerus, E. Spears, R. Droopad, and B. Ooms, “A true enhancement mode single supply power HFET for portable applications,” in IEEE MTT-S Int. Micro. Symp. Dig. , 1997, vol.3, pp. 1399-1402.
[36] E. Glass, J. Huang, M. Martinez, W. Peatman, O. Hartin, W. Valentine, M. LaBelle, J. Costa, and K. Johnson, “A true enhancement mode device technology suitable for dual mode dual band power amplifier applications, ” in IEEE RFIC Symp. Dig. , 1999, pp. 135-138.
[37] K. Fujii, and H. Morkner, “E-PHEMT, single supply, power amplifier for Ku band applications,” in IEEE MTT-S Int. Micro. Symp. Dig. , 2003, vol.2, pp.859-862.
[38] A. Raghavan. H. Deukhyoun, M. Moonkyun, A. Sutono, L. Kyutae, and J. Laskar, “A 2.2-V operation, 2.4-GHz single-chip GaAs MMIC transceiver for wireless applications,” in IEEE MTT-S Int. Micro. Symp. Dig., 2002, vol. 2, pp. 1019 –1022.
[39] J. J. Komiak, S.C. Wang, T.J. Rogers, “High efficiency 11 watt octave S/C-band PHEMT MMIC power amplifier,” in IEEE MTT-S Int. Micro. Symp. Dig., 1997, vol. 3, pp. 1421 –1424.
[40] J. J. Komiak, “Design and performance of an octave band 11 watt power amplifier MMIC,” in IEEE MTT-S Int. Micro. Symp. Dig., 1990, Vol. 38, pp. 2001 - 2006.
[41] D. Fitzgerald, Y. Tajima, R. Donahue, M. McPartlin R. Binder, M. Tsai, G. Chu, J. Wendler, “A MMIC 2.4 GHz transmitter and 5.78 GHz receiver for wireless LAN applications,” in IEEE MTT-S Int. Micro. Symp. Dig., 1999, pp.21-25.
[42] J. Portilla, H. Garcia, E. Artal, “High power-added efficiency MMIC amplifier for 2.4 GHz wireless communications,” IEEE Journal Solid-State Circuits, 1999, vol. 34, pp.120 - 123.
[43] T.B. Nishimura, K. Yamaguchi, N. Iwata, M. Tomita, K. Takemura, M. Kuzuhara, Y. Miyasaka, “ingle 2.2 V operation MMIC power amplifier utilizing SrTiO3 capacitors for 2.4 GHz wireless communication systems,” in IEEE RFIC Symp., 1997, pp.37 - 40.
[44] H. Z. Liu, C. C. Wang, Y. H. Wang, C. C. Hsu, C. H. Chang, W. Wu, C. L. Wu, and C. S. Chang; “A Single-Bias C-Band 29 dBm PHEMT MMIC Power Amplifier,” International Conference on Solid State Devices and Materials, Nagoya, Japan, pp.636-637, Sep. 18-20, 2002
[45] H. Z. Liu, C. H. Lin, C. K. Chu, H. K. Huang, M. P. Houng, C. H. Chang, C. L. Wu, C. S. Chang, Y. H. Wang, “A single-supply Ku-band 1-W power amplifier MMIC with compact self-bias PHEMTs,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp.330 – 332, June 2006
[46] D-H. Kim, H.H Noh, S.J. Kim, J.H. Lee, K.W. Chung, and K.S. Seo, “High performance of 0.15/spl mu/m quasi enhancement-mode (E-mode) In0.4GaAs/In0.4AlAs metamorphic HEMTs on GaAs substrate using new triple-gate technology,” in International Conference on Indium Phosphide and Related Materials, 2004, pp.374-377.
[47] W. Abey, T. Moriuchi, R. Hajji, T. Nakamura, Y. Nonaka, E. Mitani, W. Kennan, and H. Dang, “A single supply high performance PA MMIC for GSM handsets using quasi-enhancement mode PHEMT,” in IEEE MTT-S Int. Micro. Symp. Dig. , 2001, vol.2, pp.923-926.
[48] F. Huin, C. Duvanaud, V.Serru, F. Robin, and E. Leclerc, “A single supply very high power and efficiency integrated PHEMT amplifier for GSM applications,” in IEEE RFIC Symp. Dig., 2000, pp. 101-104.
[49] IEEE Draft Supplement to IEEE Std. 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed physical layer in the 5 GHz band, September 1999.
[50] Tangsheng Chen, Ya Shen, Fuxiao Li, and Xiaojian Chen, "3 A 9 W C-band MMICs combined power amplifier,” Microwave and Millimeter Wave Technology, 2000, 2nd International Conference on. ICMMT 2000 , pp. 203 – 206,
[51] S. Yoo, D.Heo, C-H. Lee, B. Matinpour, S. Chakraborty, and J. Laskar, "A 5.8 GHz OFDM GaAs MESFET MMIC chip Set,” in IEEE MTT-S Int. Micro. Symp. Dig. , 2000, vol. 3, pp. 1273-1276.
[52] M. Gat, D.S. Day, S. Chan, C. Hua, J.R. Basset, “A 3.0 watt high efficiency C-band power MMIC, ” in IEEE GaAs IC Symp. Tech. Dig., 1991, pp.331 - 334.
[53] A. Raghavan, E. Gebara, C.-H. Lee, S. Chakraborty, D. Mukherjee, J. Bhattacharjee, D. Heo, J. Laskar, “A GaAs HBT 5.8 GHz OFDM transmitter MMIC chip set, ” in IEEE RFIC Symp. Dig., 2001, pp.267-270.
[54] R. Tayrani, ”A monolithic X-band class-E power amplifier, ” in IEEE GaAs IC Symp. Tech. Dig., 2001, pp. 205 – 208.
[55] R. Wang, M. Cole, L.D. Hou, P. Chu, C.D. Chang, T.A. Midford, and T. Cisco, ”A 55% efficiency 5 W PHEMT X-band MMIC high power amplifier, ” in IEEE GaAs IC Symp. Tech. Dig., 1996, pp. 111 – 114.
[56] A. Bessemoulin, R. Quay, S. Ramberger, H. Massler, and M. Schlechtweg, ”A 4-W X-band compact coplanar high-power amplifier MMIC with 18-dB gain and 25% PAE, ” IEEE Journal of Solid-State Circuits, 2003, pp.1433 – 1437.
[57] S.L.G. Chu, A. Platzker, M. Borkowski, R. Mallavarpu, M. Snow, A. Bowlby, D. Teeter, T. Kazior, and K. Alavi, ”A 7.4 to 8.4 GHz high efficiency PHEMT three-stage power amplifier, ” in IEEE MTT-S Int. Micro. Symp. Dig., 2000, pp. 947-950.
[58] M. Cardullo, C. Page, D. Teeter, and A. Platzker, ”High efficiency X-Ku band MMIC power amplifiers,” in IEEE MTT-S Int. Micro. Symp. Dig., 1996, pp.145-148.
[59] B. Kraemer, R. Basset, P. Chye, Ding Day, and J. Wei, ”Power PHEMT module delivers 12 watts, 40% P.A.E. over the 8.5 to 10.5 GHz band, ” in IEEE MTT-S Int. Micro. Symp. Dig., 1994, pp.683-686.
[60] A.P. de Hek, P.A.H. Hunneman, M. Demmler, and A. Hulsmann, ”A Compact Broadband High Efficient X-band 9-Watt PHEMT MMIC High-Power Amplifier for Phased Array Radar Applications, ” GaAs99, 1999, pp.276-280.
[61] W. Bosch, J.G.E. Mayock, M.F. O'Keefe, and J. McMonagle, ”Low cost X-band power amplifier MMIC fabricated on a 0.25µm GaAs pHEMT process, ” IEEE Radar Conference, 2005, pp.22-26.
[62] United Monolithic Semiconductor (UMS), ”X-band GaInP HBT 10 W high power amplifier including on-chip bias control circuit,” in IEEE MTT-S Int. Micro. Symp. Dig., 2003, pp.855-858.
[63] S. Piotrowicz, E. Chartier, J.C. Jacquet, D. Floriot, J. Obregon, P. Dueme, J. Delaire, Y. Mancuso, “Ultra Compact X-Band GaInP/GaAs HBT MMIC amplifiers : 11W, 42% of PAE on 13mm2 and 8.7W, 38% of PAE on 9mm2,” in IEEE MTT-S Int. Micro. Symp. Dig., 2006, pp.1867 - 1870
[64] A.M. Couturier, S. Heckmann, V. Serru, Huet, T. P. Chaumas, J J. Fontecave, M. Camiade, J.P. Viaud, S. Piotrowicz, “A Robust 11W High efficiency X-band GaInP HBT amplifier,” in IEEE MTT-S Int. Micro. Symp. Dig., 2007, pp.813 – 816
[65] F. van Raay, R. Quay, R. Kiefer, F. Benkhelifa, B. Raynor, W. Pletschen, M. Kuri, H. Massler, S. Muller, M. Dammann, M. Mikulla, M. Schlechtweg, G. Weimann, “A coplanar X-band AlGaN/GaN power amplifier MMIC on s.i. SiC substrate,” IEEE Microw. Wireless Compon. Lett., vol. 15, iss. 7, pp. 460 – 462, July 2005.
[66] R. Wang, M. Cole, L.D. Hou, P. Chu, C.D. Chang, T.A. Midford, T. Cisco, “A 55% efficiency 5 W PHEMT X-band MMIC high power amplifier,” in IEEE GaAs IC Symp. Dig., 1996. pp. 111 – 114
[67] H. Klockenhoff, R. Behtash, J. Wurfl, W. Heinrich, G. Trankle, “A Compact 16 Watt X-Band GaN-MMIC Power Amplifier,” in IEEE MTT-S Int. Micro. Symp. Dig., 2006, pp.1846 - 1849
[68] M. Cardullo, C. Page, D. Teeter, A. Platzker, “High efficiency X-Ku band MMIC power amplifiers,” in IEEE MTT-S Int. Micro. Symp. Dig., 1996, vol.1, pp. 145 – 148.
[69] W. Bosch, J.G.E. Mayock, M.F. O'Keefe, and J. McMonagle, “Low cost X-band power amplifier MMIC fabricated on a 0.25µm GaAs pHEMT process,” in IEEE International Radar Conference, 2005, pp. 22-26.
[70] H. Oraizi, A.-R Sharifi, " Design and optimization of broadband asymmetrical multisection Wilkinson power divider,” IEEE Transactions Microwave Theory and Techniques, vol. 54, pp.2220 – 2231, May 2006.
[71] Guo Qingxin, Ma Yanjun and Ju Jilong, "A novel broadband high-power combiner,” in Asia-Pacific Conference Proceedings, vol. 5, December 2005.
[72] A. Wentzel, V. Subramanian, A. Sayed, and G. Boeck, "Novel Broadband Wilkinson Power Combiner,” in European Microwave Conference, 2006, pp.212 – 215.
[73] Sun Yi, and A.P. Freundorfer, "Broadband folded Wilkinson power combiner/splitter,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 6, pp. 295 – 297, June 2004.