| 研究生: |
孫佩瑜 Sun, Pei-Yu |
|---|---|
| 論文名稱: |
以不連續有限元素法評價障礙選擇權 Pricing barrier options with Discontinuous Galerkin methods |
| 指導教授: |
陳旻宏
Chen, Min-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 蒙地卡羅 、Crank-Nicolson有限差分法 、不連續有限元素法 、障礙選擇權 、傳導擴散方程 、熱方程 |
| 外文關鍵詞: | Monte Carlor, Crank-Nicolson, Discontinuous Galerkin method, barrier option, heat equation, advection diffusion equation |
| 相關次數: | 點閱:161 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以蒙地卡羅、Crank-Nicolson有限差分法及不連續有限元素法三種數值方法解障礙選擇權,並利用Merton(1973)與 Reiner and Rubinstein 所提出的障礙選擇權定價公式做為正解。
本文先介紹衍生性金融商品、障礙選擇權,接著再以Black-Scholes為數學模型,轉換成傳導擴散方程及熱方程的邊界值問題,利用Crank-Nicolson及不連續有限元素法解熱方程及傳導擴散方程,求出障礙選擇權價格。
In this work,we use Monte Carlor,Crank-Nicolson and Discotiuous Galerkin numerical methods to solve the barrier options,and use the barrier option fixed price formula brought up by Merton(1973) , Reiner and Rubinstein as the normal solution.
First,we introduce derivative financial commodity and barrier options.The Black-Scholes model is converted to Heat equation and Advection diffusion equation by Crank-Nicolson and Discontinuous Galerkin to in order to get the prices of the barrier options.
[1] 葉芳柏.葉芝字,財務工程基礎理論與Excel實務模擬 ,全華科技圖書,6.8-7.7,2005.
[2] 陳達新,財務數學-隨機過程與衍生性金融商品評價,雙葉書廊有限公司,5.3、6.1-8.3.
[3] 張傳章,期貨與選擇權,雙葉書廊有限公司 , 1.1、16.1 16.2.
[4] 孫雅玲 ,雙邊界障礙選擇權評價,國立成功大學應用數學研究所碩士論文,2004.
[5] 廖四郎 ,從Black-Scholes模型分析理論數理才務模型之發展,亞太經濟管理評論,第二卷,第一期,(1998),97-123.
[6] B. Cockburn, ”Discontinuous Galerkin methods”, ZAMM. Z. Angew. Math. Mech. vol. 83, No. 11, p. 731-754 ,2003.
[7] J. C. HULL, ”Options,Futures,and Other Derivatives 7th Edition”, 13.8、24.6,2005.
[8] R.Zvan,K.R. Vetzal,P.A. Forsyth, ”PDE methods for pricing barrier options”, Journal of Economics Dynamics Control 24(2000) 1563-1590.
[9] R. J. LeVeque, ”Finite Difference Methods for Differential Equations”, University of Washington, 2006.
[10] Dana, R.-A. and M. Jeanblanc, ”Financial markets in continuous time”, Springer- Verlag(2003).
[11] L. J. Campbell, B. Yin, "Triangular Mesh Methods For The Neutron Transport Equation", University of California, 1973.3
[12] L. J. Campbell, "On the Stability of Alternating-Direction Explicit Methods for Advection-Di usion Equations", Wiley InterScience (2006).
[13] I-Liang Chern, "FINANCIAL MATHEMATICS", Department of Mathematics National Taiwan University.
[14] Bernardo Cockburn and Chi-Wang Shu, "Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems", Journal of Scienti c Computing (2000) 229-235.
[15] M.H Chen,C.C Chang,C.H Teng, "High-Order Summation-by-Parts Implicit Difference Operators for Wave Problems", math.ncku(2008).3