簡易檢索 / 詳目顯示

研究生: 孫佩瑜
Sun, Pei-Yu
論文名稱: 以不連續有限元素法評價障礙選擇權
Pricing barrier options with Discontinuous Galerkin methods
指導教授: 陳旻宏
Chen, Min-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 39
中文關鍵詞: 蒙地卡羅Crank-Nicolson有限差分法不連續有限元素法障礙選擇權傳導擴散方程熱方程
外文關鍵詞: Monte Carlor, Crank-Nicolson, Discontinuous Galerkin method, barrier option, heat equation, advection diffusion equation
相關次數: 點閱:161下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以蒙地卡羅、Crank-Nicolson有限差分法及不連續有限元素法三種數值方法解障礙選擇權,並利用Merton(1973)與 Reiner and Rubinstein 所提出的障礙選擇權定價公式做為正解。
    本文先介紹衍生性金融商品、障礙選擇權,接著再以Black-Scholes為數學模型,轉換成傳導擴散方程及熱方程的邊界值問題,利用Crank-Nicolson及不連續有限元素法解熱方程及傳導擴散方程,求出障礙選擇權價格。

    In this work,we use Monte Carlor,Crank-Nicolson and Discotiuous Galerkin numerical methods to solve the barrier options,and use the barrier option fixed price formula brought up by Merton(1973) , Reiner and Rubinstein as the normal solution.
    First,we introduce derivative financial commodity and barrier options.The Black-Scholes model is converted to Heat equation and Advection diffusion equation by Crank-Nicolson and Discontinuous Galerkin to in order to get the prices of the barrier options.

    1緒論....................................1 1.1衍生性金融商品的介紹..............................1 1.2障礙選擇權的介紹.......................................3 1.3研究主題與章節大綱..................................5 2選擇權的評價................................6 2.1Black-Scholes模型........................7 2.2Black-Scholes轉換傳導擴散方程(Advection Diffusion equation)及熱方程式(Heat equation)............................11 2.3障礙選擇權封閉解....................................14 3數值方法..........................................................17 3.1蒙地卡羅模擬法(Monte Carlo Approach)............17 3.1.1障礙選擇權的蒙地卡羅定價.............................19 3.2Crank-Nicolson方法.....................................20 3.3Discontinuous Galerkin Methods(DG).....................22 4計算結果.................................................25 5結論.................................................35 參考文獻.......................................36

    [1] 葉芳柏.葉芝字,財務工程基礎理論與Excel實務模擬 ,全華科技圖書,6.8-7.7,2005.

    [2] 陳達新,財務數學-隨機過程與衍生性金融商品評價,雙葉書廊有限公司,5.3、6.1-8.3.

    [3] 張傳章,期貨與選擇權,雙葉書廊有限公司 , 1.1、16.1 16.2.

    [4] 孫雅玲 ,雙邊界障礙選擇權評價,國立成功大學應用數學研究所碩士論文,2004.

    [5] 廖四郎 ,從Black-Scholes模型分析理論數理才務模型之發展,亞太經濟管理評論,第二卷,第一期,(1998),97-123.

    [6] B. Cockburn, ”Discontinuous Galerkin methods”, ZAMM. Z. Angew. Math. Mech. vol. 83, No. 11, p. 731-754 ,2003.

    [7] J. C. HULL, ”Options,Futures,and Other Derivatives 7th Edition”, 13.8、24.6,2005.

    [8] R.Zvan,K.R. Vetzal,P.A. Forsyth, ”PDE methods for pricing barrier options”, Journal of Economics Dynamics Control 24(2000) 1563-1590.

    [9] R. J. LeVeque, ”Finite Difference Methods for Differential Equations”, University of Washington, 2006.

    [10] Dana, R.-A. and M. Jeanblanc, ”Financial markets in continuous time”, Springer- Verlag(2003).

    [11] L. J. Campbell, B. Yin, "Triangular Mesh Methods For The Neutron Transport Equation", University of California, 1973.3

    [12] L. J. Campbell, "On the Stability of Alternating-Direction Explicit Methods for Advection-Di usion Equations", Wiley InterScience (2006).

    [13] I-Liang Chern, "FINANCIAL MATHEMATICS", Department of Mathematics National Taiwan University.

    [14] Bernardo Cockburn and Chi-Wang Shu, "Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems", Journal of Scienti c Computing (2000) 229-235.

    [15] M.H Chen,C.C Chang,C.H Teng, "High-Order Summation-by-Parts Implicit Difference Operators for Wave Problems", math.ncku(2008).3

    下載圖示 校內:2015-02-15公開
    校外:2015-02-15公開
    QR CODE