| 研究生: |
曾靖富 Tseng, Jing-Fu |
|---|---|
| 論文名稱: |
氣相沉積多元鈣鈦礦之太陽能電池 Multi-component perovskite fabricated via vapor-assisted deposition |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 多元鈣鈦礦太陽能電池 、低壓化學氣相沈積 |
| 外文關鍵詞: | Multi-perovskite solar cell, Vapor-assisted deposition |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要著重在氣相沈積合成多元鈣鈦礦薄膜載在n-type結構之太陽能電池以及在不同濃度、反應時間、摻雜分子下合成鈣鈦礦膜之分析。由初期高真空下的共蒸鍍系統發展出的不同氣相沈積合成法,透過緩慢的反應過程來達到較好的成核與成長過程,氣相沈積合成之鈣鈦礦晶粒大且無破洞可減少缺陷與漏電的產生,在吸收(UV-vis)與受激螢光放光(Photoluminescence)等光學分析上皆與溶液製成法合成之高效率鈣鈦礦有相同的結果,說明氣相沈積為可合成高效率鈣鈦礦的方法之一。氣相沈積除了使用在傳統之MAPbI3的鈣鈦礦外也可用於不同材料,FAPbI3(Formamidinium lead iodide)是一個能隙寬較MAPbI3窄的材料,因此吸光範圍會紅移而使光電流提升而進一步優化來達到元件效率的提升,透過摻雜FAI其鈣鈦礦太陽能電池元件效率達到15.48%。摻雜MABr其鈣鈦礦太陽能電池元件效率達11.84%。
In this research, we manufactured multi-component perovskite films by VASP method. We change the reaction time of fabricated CH3NH3PbI3 perovskite films. The PSCs fabricated at reaction time 2 h have the best performances with Voc of 1.01 V, Jsc of 20.99 mA cm-2, and FF of 0.70, leading to an overall efficiency of 15.10%. We change the powder of fabricated multi-component perovskite film via VASP method. We used the FAI and MABr powder to a dual-source vapor deposition process in 2 h at 150 °C. The PSCs fabricated by only doping FAI have best performance with Voc of 1.02 V, Jsc of 19.54 mA cm-2, and FF of 0.76, leading to an overall efficiency of 15.48%.
1.Becquerel, E., Compt. Rend., 1839.9
2.Chapin, D. M., Fuller, C. S., & Pearson, G. L. A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677. (1954)
3.Carlson, D. E., & Wronski, C. R. Amorphous silicon solar cell. Applied Physics Letters, 28(11), 671-673. (1976)
4.Blakers, A. W., Wang, A., Milne, A. M., Zhao, J., & Green, M. A. 22.8% efficient silicon solar cell. Applied Physics Letters, 55(13), 1363-1365. (1989)
5.Verlinden, P., Deng, W., Zhang, X., Yang, Y., Xu, J., Shu, Y., ... & Ping, F. Strategy, development and mass production of high-efficiency crystalline Si PV modules. Paper 4sMoO, 1(6). (2014)
6.First Solar Press Release, August 5, (2014).
7.Kayes, B. M., Nie, H., Twist, R., Spruytte, S. G., Reinhardt, F., Kizilyalli, I. C., & Higashi, G. S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE (pp. 000004-000008). IEEE. (2011, June)
8.Osborne, M. Hanergy’s Solibro has 20.5% CIGS solar cell verified by NREL. (2014)
9.Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proceedings, 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan (2013).
10.Dr Frank Dimroth, et al. Press Release 22/13, September 23, (2013)
11.Komiya, R., Fukui, A., Murofushi, N., Koide, N., Yamanaka, R., & Katayama, H. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. In Technical Digest, 21st International Photovoltaic Science and Engineering Conference (pp. 2C-5O). (2011, November)
12.O’regan, B., & Grfitzeli, M. A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353(6346), 737-740. (1991)
13.Grätzel, M. Photoelectrochemical cells. Nature, 414(6861), 338-344. (2001)
14.Peumans, P., & Forrest, S. R. (2001). Very-high-efficiency double-heterostructure copper phthalocyanine / C60 photovoltaic cells. Applied Physics Letters, 79(1), 126-128. (2001)
15.Werner, J., Weng, C. H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., ... & Ballif, C. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. The journal of physical chemistry letters, 7(1), 161-166. (2015)
16.Emery, K., & Myers, D. Reference solar spectral irradiance: air mass 1.5. Center, RERD, Ed. (2009)
17.Carson, J. A. (Ed.). Solar cell research progress. Nova Publishers. (2008)
18.Smestad, G. P. Optoelectronics of solar cells (Vol. 115). Spie Press. (2002)
19.Claeys, C., & Simoen, E. (Eds.). Germanium-based technologies: from materials to devices. Elsevier. (2011)
20.Hao, F., Stoumpos, C. C., Chang, R. P., & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 136(22), 8094-8099. (2014)
21.Bai, S., Wu, Z., Wu, X., Jin, Y., Zhao, N., Chen, Z., ... & Liu, R. (2014). High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research, 7(12), 1749-1758. (2014)
22.Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., & Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699. (2015)
23.Shen, P. S., Chen, J. S., Chiang, Y. H., Li, M. H., Guo, T. F., & Chen, P. Low‐Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large‐Area Module. Advanced Materials Interfaces, 3(8). (2016)
24.Cui, X. P., Jiang, K. J., Huang, J. H., Zhou, X. Q., Su, M. J., Li, S. G., ... & Song, Y. L. Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells. Chemical Communications, 51(8), 1457-1460. (2015)
25.Liu, M., Johnston, M. B., & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. (2013)
26.Chen, C. W., Kang, H. W., Hsiao, S. Y., Yang, P. F., Chiang, K. M., & Lin, H. W. Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials, 26(38), 6647-6652. (2014)
27.Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H., ... & Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2), 622-625. (2013)
28.Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S., & Qi, Y. High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry A, 2(44), 18742-18745. (2014)
29.Li, Y., Cooper, J. K., Buonsanti, R., Giannini, C., Liu, Y., Toma, F. M., & Sharp, I. D. Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. The journal of physical chemistry letters, 6(3), 493-499. (2015)
30.Sedighi, R., Tajabadi, F., Shahbazi, S., Gholipour, S., & Taghavinia, N. Mixed‐Halide CH3NH3PbI3− xXx (X= Cl, Br, I) Perovskites: Vapor‐Assisted Solution Deposition and Application as Solar Cell Absorbers. ChemPhysChem, 17(15), 2382-2388. (2016)
31.Yin, X., Yao, Z., Luo, Q., Dai, X., Zhou, Y., Zhang, Y., ... & Lin, H. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact. ACS applied materials & interfaces, 9(3), 2439-2448. (2017)