| 研究生: |
白修明 Pai, Hsiu-Ming |
|---|---|
| 論文名稱: |
基於軟體定義網路之運用車輛到 IEEE 802.11p 基礎網路的行動網路分流機制 The Software-Defined Network (SDN) – Based Vehicle to Infrastructure (V2I) Offloading Scheme from Cellular Network to 802.11p Wi-Fi Network |
| 指導教授: |
黃崇明
Huang, Chung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 車到基礎設施間通訊 、網路分流 、IEEE 802.11p 、軟體定義網路 、行動通訊架構 |
| 外文關鍵詞: | Vehicle-to-Vehicle/Roadside/Internet communication, Offloading, IEEE 802.11p, Software Defined Network (SDN), Mobility Modeling and Communication Architecture |
| 相關次數: | 點閱:113 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出了一種稱為基於軟體定義網路(OHD-SDN)的預先換手分流決策機制,將車建構於軟體定義網路(SDN)下,使用於車到基礎設施通信從行動網路分流到路基台(RSU)的 IEEE 802.11p 網路, 在所提出的控制方案中,當具有車載單元(OBU)的車輛(其具有行動網路介面和 IEEE 802.11p 網路介面)連接到行動網路時,SDN 控制器監控車輛回報的資訊,包括速度,地理位置,方向和感測到的相鄰 RSU 的 ID。一旦車輛接近 IEEE 802.11p路基台,SDN 控制器將判斷車輛是否切換到 RSU 以進行分流。 SDN 控制器(1)計算到做出分流決策的時間,(2)決定使車輛從行動網路切換到即將遇到的 RSU 的 IEEE 802.11p 網路是否合適,(3)通知如果前面的 RSU IEEE 802.11p 網路的網路狀況不合適,則車輛保持在行動網路中,或者如果前面的 RSU 的 IEEE 802.11p 網路的網路狀況是合適,則將車輛從行動網路切換到 RSU IEEE 802.11p 網路。模擬結果表明,使用提出的 OHD-SDN 控制方案,可以降低行動網路的負載和流量,並且可以確保 RSU 的 IEEE 802.11p 網路中的車輛的網路品質。
This paper proposes a prediction control scheme - called Offloading with Handover Decision based on Software-Defined Network (OHD-SDN) for the offloading of the vehicle-toinfrastructure communication from cellular network to IEEE 802.11p network of a Road Side Unit (RSU) using the Software-Defined Network (SDN) Architecture. In the proposed control scheme, when the vehicle with an On Board Unit (OBU), which has a cellular networks interface and an IEEE 802.11p network interface, connects to cellular network, the SDN Controller monitors it to make decision about the offloading indication based on the reported information, including speed, geographical position, direction, and sensed neighboring RSUs’ IDs, from the vehicle. Once the vehicle is approaching the IEEE 802.11p RSUs, the SDN Controller will judge whether it is good or not for the vehicle to switch to the RSU for offloading or not. The SDN Controller (1) calculates when the due time is to make decision, (2) decides whether it is suitable or not to have the vehicle to handoff from cellular network to the ahead IEEE 802.11p network of a RSU, (3) notifies the vehicle to stay in cellular network if the networking situation of the ahead RSUs IEEE 802.11p network is not suitable or to switch from cellular network to the ahead RSUs IEEE 802.11p network if the networking situation of the ahead RSU’s IEEE 802.11p network is suitable. The simulation results show that the cellular networks load and traffic can be reduced and the networking quality of the vehicle being in the IEEE 802.11p network of a RSU can be assured using the proposed OHD-SDN control scheme.
[1] X. Wu, S. Subramanian, R. Guha, R. G. White, J. Li, K. W. Lu, A. Bucceri, and T. Zhang, “Vehicular Communications Using DSRC: Challenges, Enhancements, and Evolution,” IEEE Journal on Selected Areas in Communications, VOL. 31, pp. 399–408, 09 2013.
[2] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A Comprehensive Survey on Vehicular Ad Hoc Network,” Journal of Network and Computer Applications, VOL. 37, pp. 380–392, 01 2014.
[3] P. Matzakos, J. Hrri, B. Villeforceix, and C. Bonnet, “An IPv6 Architecture for Cloud-to-Vehicle Smart Mobility Services over Heterogeneous Vehicular Networks,” Proceedings of 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp. 767–772, Nov 2014.
[4] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile Data Offloading: How Much Can WiFi Deliver?” IEEE/ACM Transactions on Networking, VOL. 21, pp. 536–550, 04 2013.
[5] N. Cheng, N. Lu, N. Zhang, X. S. Shen, and J. W. Mark, “Opportunistic WiFi Offloading in Vehicular Environment: A Queueing Analysis,” Proceedings of 2014 IEEE Global Communications Conference, pp. 211–216, Dec 2014.
[6] “Open Networking Foundation, Openflow Switch Specification.” https://www.opennetworking.org/images/ stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf. Accessed:19 Dec 2016.
[7] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, VOL. 103, NO. 1, pp. 14–76, Jan 2015.
[8] A. Aijaz, H. Aghvami, and M. Amani, “A Survey on Mobile Data Offloading: Technical and Business Perspectives,” IEEE Wireless Communications, VOL. 20, NO. 2, pp. 104–112, April 2013.
[9] Y. He, M. Chen, B. Ge, and M. Guizani, “On WiFi Offloading in Heterogeneous Networks: Various Incentives and Trade-Off Strategies,” IEEE Communications Surveys Tutorials, VOL. 18, NO. 4, pp. 2345–2385, Fourthquarter 2016.
[10] D. Suh, H. Ko, and S. Pack, “Efficiency Analysis of WiFi Offloading Techniques,” IEEE Transactions on Vehicular Technology, VOL. 65, NO. 5, pp. 3813–3817, 05 2016.
[11] N. Nguyen, M. Arifuzzaman, and T. Sato, “A Novel WLAN Roaming Decision and Selection Scheme for Mobile Data Offloading,” Journal of Electrical and Computer Engineering, VOL. 2015, Article ID 324936, pp. 1–15, 2015.
[12] H. Park, Y. Jin, J. Yoon, and Y. Yi, “On The Economic Effects of User-Oriented Delayed Wi-Fi Offloading,” IEEE Transactions on Wireless Communications, VOL. 15, NO. 4, pp. 2684–2697, 04 2016.
[13] G. e. m. Zhioua, H. Labiod, N. Tabbane, and S. Tabbane, “VANET Inherent Capacity for Offloading Wireless Cellular Infrastructure: An Analytical Study,” Proceedings of the 6th International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5, March 2014.
[14] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang, “Offloading Mobile Data Traffic for QoS-Aware Service Provision in Vehicular Cyber-Physical Systems,” Future Generation Computer Systems, VOL. 61, pp. 118–127, 08 2016.
[15] N. Cheng, N. Lu, N. Zhang, X. Zhang, X. S. Shen, and J. W. Mark, “Opportunistic WiFi Offloading in Vehicular Environment: A Game-Theory Approach,” IEEE Transactions on Intelligent Transportation Systems, VOL. 17, NO. 7, pp. 1944–1955, 07 2016.
[16] Y. Liu, X. Chen, C. Chen, and X. Guan, “Traffic Big Data Analysis Supporting Vehicular Network Access Recommendation,” Proceedings of 2016 IEEE International Conference on Communications (ICC), pp. 1–6, May 2016.
[17] G. e. m. Zhioua, H. Labiod, N. Tabbane, and S. Tabbane, “A Traffic QoS Aware Approach for Cellular Infrastructure Offloading using VANETs,” Proceedings of the 22nd IEEE International Symposium of Quality of Service (IWQoS), pp. 278– 283, May 2014.
[18] G. E. M. Zhioua, H. Labiod, N. Tabbane, and S. Tabbane, “Cellular Content Download through A Vehicular Network: I2V Link Estimation,” Proceedings of the 81st IEEE Vehicular Technology Conference (VTC Spring), pp. 1–6, May 2015.
[19] J. Chen, B. Liu, L. Gui, F. Sun, and H. Zhou, “Engineering Link Utilization in Cellular Offloading Oriented VANETs,” Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec 2015.
[20] J. F. Bravo-Torres, J. V. Sains-Vzquez, M. Lpez-Nores, Y. Blanco-Fernndez, and J. J. Pazos-Arias, “Mobile Data Offloading in Urban VANETs on Top of A Virtualization Layer,” Proceedings of 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 291–296, Aug 2015.
[21] A. Bazzi, B. M. Masini, A. Zanella, and G. Pasolini, “Virtual Road Side Units for Geo-Routing in VANETs,” Proceedings of 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp. 234–239, Nov 2014.
[22] G. el Mouna Zhioua, J. Zhang, H. Labiod, N. Tabbane, and S. Tabbane, “VOPP: A VANET Offloading Potential Prediction Model,” Proceedings of 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2408– 2413, April 2014.
[23] A. Bazzi, B. M. Masini, A. Zanella, and G. Pasolini, “IEEE 802.11p for Cellular Offloading in Vehicular Sensor Networks,” Computer Communications, VOL. 60, pp. 97–108, 04 2015.
[24] J. Pan, I. S. Popa, and C. Borcea, “DIVERT: A Distributed Vehicular Traffic Re-Routing System for Congestion Avoidance,” IEEE Transactions on Mobile Computing, VOL. 60, NO. 1, pp. 58-72, Jan. 1 2017.
[25] S. M. Park, S. Ju, and J. Lee, “Efficient Routing for Traffic Offloading in Software-Defined Network,” Procedia Computer Science, VOL. 34, pp. 674–679, 2014.
[26] X. Duan, A. M. Akhtar, and X. Wang, “Software-Defined Networking-based Resource Management: Data Offloading with Load Balancing in 5G HetNet,” EURASIP Journal on Wireless Communications and Networking, VOL. 2015, NO. 1, pp.181, 06 2015.
[27] J. Cho, B. Nguyen, A. Banerjee, R. Ricci, J. Van der Merwe, and K. Webb, “SMORE: Software-Defined Networking Mobile Offloading Architecture,” Proceedings of the 4th Workshop on All Things Cellular: Operations, Applications, and Challenges, AllThingsCellular ’14, (New York, NY, USA), pp. 21–26, ACM, 2014.
[28] Z. He, D. Zhang, and J. Liang, “Cost-Efficient Sensory Data Transmission in Heterogeneous Software-Defined Vehicular Networks,” IEEE Sensors Journal, VOL. 16, NO. 20, pp. 7342–7354, 10 2016.
[29] A. U. Khan and B. K. Ratha, “Time Series Prediction QoS Routing in Software-Defined Vehicular Ad-Hoc Network,” Proceedings of 2015 International Conference on Man and Machine Interfacing (MAMI), pp. 1–6, Dec 2015.
[30] P. Kolios, C. Panayiotou, and G. Ellinas, “Extract: Expediting Offloading Transfers through Intervehicle Communication Transmissions,” IEEE Transactions on Intelligent Transportation Systems, VOL. 16, NO. 3, pp. 1238–1248, 06 2015.
[31] R. Fernandes and M. Ferreira, “Scalable VANET Simulations with NS-3,” Proceedings of the 75th IEEE Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2012.
[32] P. Salvo, I. Turcanu, F. Cuomo, A. Baiocchi, and I. Rubin, “Heterogeneous Cellular and DSRC Networking for Floating Car Data Collection in Urban Areas,” Vehicular Communications, 2016.
[33] V. B. C. da Silva, M. E. M. Campista, and L. H. M. Costa, “TRAC: A Trajectory-Aware Content Distribution Strategy for Vehicular Networks,” Vehicular Communications, VOL. 5, pp. 18–34, 2016.
[34] A. Mabrouk, A. Kobbane, E. Sabir, J. Ben-Othman, and M. El Koutbi, “Meeting Always-Best-Connected Paradigm in Heterogeneous Vehicular Networks: A Graph Theory and A Signaling Game Analysis,” Vehicular Communications, VOL. 5, pp. 1–8, 2016.
[35] A. D. L. Oliva, A. Banchs, I. Soto, T. Melia, and A. Vidal, “An Overview of IEEE 802.21: Media-Independent Handover Services,” IEEE Wireless Communications, VOL. 15, pp. 96–103, Aug 2008.
[36] M. I. Sanchez, M. Uruena, A. D. L. Oliva, J. A. Hernandez, and C. J. Bernardos, “On Providing Mobility Management in Wobans: Integration with Pmipv6 and MIH,” IEEE Communications Magazine, VOL. 51, pp. 172– 181, October 2013.
[37] N. Cheng, N. Lu, N. Zhang, X. S. Shen, and J. W. Mark, “Vehicular Wifi Offloading: Challenges and Solutions,” Vehicular Communications, VOL. 1, pp. 13–21, 01 2014.