| 研究生: |
王詩琳 Wijaya, Dea Ruby Austine |
|---|---|
| 論文名稱: |
二氧化鈦光觸媒薄膜之製備與應用 Preparation and Application of TiO2 Photocatalytic Coatings |
| 指導教授: |
洪昭南
Hong, Zhao-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 光催化劑 、二氧化鈦納米粒子 、亞甲藍 、揮發性有機物 |
| 外文關鍵詞: | Photocatalyst, TiO2 nanoparticle, Methylene blue, Volatile organic compounds |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用二氧化鈦(TiO2) 奈米粒子在廢水和揮發性有機化合物(VOCs) 煙氣處理設備. 利用異丙醇鈦為前驅體,成功合成了二氧化鈦(TiO2)光催化氧化應用納米粒子. 通過浸塗將此納米顆粒塗覆到金屬基材上. 本研究分析及改進了塗層均勻性,金屬基材上的粘附性和其他特性. 測量亞甲基藍(Methylene blue) 以及乙醛(acetaldehyde) 去除以評估二氧化鈦塗層的光催化活性.新塗覆的基材用於亞甲基藍去除,60%染料去除掉. 經過多次重複測量,這表明該催化劑中毒MB去除率減少到45%. 對於長期應用,催化劑需要清潔和再生,為實現穩定的VOC去除性能. 因此,開發並研究了一些催化劑再生技術. 新塗覆的基材除去高達99%的乙醛.通過適當的再生步驟中,去除效率在重複幾次之後維持在97.56%.本研究結果表明催化劑再生方法有助於降低催化劑表面劣化的影響,此可能是長期應用的主要挑戰.
In this study, the titanium dioxide (TiO2) nanoparticles were applied in wastewater and volatile organic compounds (VOCs) flue gas treatment equipment. TiO2 based nanoparticle for photocatalytic oxidation application were successfully synthesized using the titanium isopropoxide as precursor. These nanoparticles were coated to metal substrate through dip coating. The coating uniformity, adhesion on metallic substrate, and other characteristics were analyzed and improved. Methylene blue (MB) removal and acetaldehyde removal were measured to evaluate photocatalytic activity performance of the TiO2 coating. The freshly coated substrate was used for MB removal with 60% dye removal. However, MB removal rate were reduced to 45% after several measurement repetitions, which indicates the catalyst poisoning. For the long term application, the catalyst needs to be cleaned and regenerated in order to achieve stable VOCs removal performance. Thus, some catalyst regeneration techniques were developed and studied thoroughly. The freshly coated substrate removed up to 99% of acetaldehyde. Through a proper regeneration step, the removal efficiency was maintained at 97.56% after several repetitions. This result showed that catalyst regeneration method helps reduce the effects of catalyst surface deterioration which can be a major challenge for long term application.
1. Buffler, P. A., Crane, M., & Key, M. M. (1985). Possibilities of detecting health effects by studies of populations exposed to chemicals from waste disposal sites. Environmental Health Perspectives, 62, 423.
2. Sumitsawan, S., Cho, J., Sattler, M. L., & Timmons, R. B. (2011). Plasma surface modified TiO2 nanoparticles: improved photocatalytic oxidation of gaseous m-xylene. Environmental science & technology, 45(16), 6970-6977.
3. Ray, M. B. (2000). Photodegradation of the volatile organic compounds in the gas phase: a review. Asia‐Pacific Journal of Chemical Engineering, 8(5‐6), 405-439.
4. De Heredia, J. B., Torregrosa, J., Dominguez, J. R., & Peres, J. A. (2001). Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic. Journal of hazardous materials, 83(3), 255-264.
5. Ghaly, M. Y., Farah, J. Y., & Fathy, A. M. (2007). Enhancement of decolorization rate and COD removal from dyes containing wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation. Desalination, 217(1-3), 74-84.
6. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric Environment, 43(14), 2229-2246.
7. Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M., Cab, C., de Coss, R. d., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19(14), 145605.
8. Monteiro, R. A. R. (2014). Solar Photocatalysis for Gas-Phase Air Cleaning: from lab to pilot plant studies. Universidade do Porto (Portugal).
9. Zaban, A., Aruna, S., Tirosh, S., Gregg, B., & Mastai, Y. (2000). The effect of the preparation condition of TiO2 colloids on their surface structures. The Journal of Physical Chemistry B, 104(17), 4130-4133.
10. Batzill, M. (2011). Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy & Environmental Science, 4(9), 3275-3286.
11. Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO 2 films. Scientific reports, 4, 4043.
12. Hengerer, R., Kavan, L., Krtil, P., & Grätzel, M. (2000). Orientation Dependence of Charge‐Transfer Processes on TiO2 (Anatase) Single Crystals. Journal of the Electrochemical Society, 147(4), 1467-1472.
13. Diebold, U. (2003). The surface science of titanium dioxide. Surface science reports, 48(5-8), 53-229.
14. Tao, J., & Batzill, M. (2010). Role of surface structure on the charge trapping in TiO2 photocatalysts. The journal of physical chemistry letters, 1(21), 3200-3206.
15. Xu, M., Gao, Y., Moreno, E. M., Kunst, M., Muhler, M., Wang, Y., . . . Wöll, C. (2011). Photocatalytic activity of bulk TiO 2 anatase and rutile single crystals using infrared absorption spectroscopy. Physical Review Letters, 106(13), 138302.
16. Yamada, Y., & Kanemitsu, Y. (2012). Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals. Applied Physics Letters, 101(13), 133907.
17. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 114(19), 9919-9986.
18. Ambrus, Z., Mogyorósi, K., Szalai, Á., Alapi, T., Demeter, K., Dombi, A., & Sipos, P. (2008). Low temperature synthesis, characterization and substrate-dependent photocatalytic activity of nanocrystalline TiO2 with tailor-made rutile to anatase ratio. Applied Catalysis A: General, 340(2), 153-161.
19. Colón, G., Sanchez-Espana, J., Hidalgo, M., & Navío, J. (2006). Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 179(1-2), 20-27.
20. Corradini, D., Ishii, Y., Ohtori, N., & Salanne, M. (2015). DFT-based polarizable force field for TiO2 and SiO2. Modelling and Simulation in Materials Science and Engineering, 23(7), 074005.
21. Hagen, J. (2015). Industrial catalysis: a practical approach: John Wiley & Sons.
22. Banerjee, S., Pillai, S. C., Falaras, P., O’shea, K. E., Byrne, J. A., & Dionysiou, D. D. (2014). New insights into the mechanism of visible light photocatalysis. The journal of physical chemistry letters, 5(15), 2543-2554.
23. Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
24. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238(5358), 37.
25. Swarnakar, P., Kanel, S. R., Nepal, D., Jiang, Y., Jia, H., Kerr, L., . . . Rakovan, J. (2013). Silver deposited titanium dioxide thin film for photocatalysis of organic compounds using natural light. Solar Energy, 88, 242-249.
26. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., . . . Watanabe, T. (1997). Light-induced amphiphilic surfaces. nature, 388(6641), 431.
27. Lee, D. M., Yun, H. J., Yu, S., Yun, S. J., Lee, S. Y., Kang, S. H., & Yi, J. (2012). Design of an efficient photocatalytic reactor for the decomposition of gaseous organic contaminants in air. Chemical engineering journal, 187, 203-209.
28. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29.
29. Elsevier, S. (2009). Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 收錄起迄年: 2000-Present.
30. Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
31. Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface science reports, 63(12), 515-582.
32. Zhang, J., & Nosaka, Y. (2014). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. The Journal of Physical Chemistry C, 118(20), 10824-10832.
33. Asmatulu, R. (2012). Nanocoatings for corrosion protection of aerospace alloys Corrosion Protection and Control Using Nanomaterials (pp. 357-374): Elsevier.
34. Li, W., Wang, J., & Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148(1-2), 81-87.
35. Environmental Protection Agency, 2017. Available : https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#2
36. Environmental Protection Agency, 2017. Available : https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#8
37. Cohen, M. A., Ryan, P. B., Yanagisawa, Y., Spengler, J. D., Özkaynak, H., & Epstein, P. S. (1989). Indoor/outdoor measurements of volatile organic compounds in the Kanawha Valley of West Virginia. Japca, 39(8), 1086-1093.
38. Raso, R. A., Zeltner, M., & Stark, W. J. (2014). Indoor air purification using activated carbon adsorbers: Regeneration using catalytic combustion of intermediately stored VOC. Industrial & Engineering Chemistry Research, 53(49), 19304-19312.
39. Uebelacker, M., & Lachenmeier, D. W. (2011). Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography. Journal of Analytical Methods in Chemistry, 2011.
40. Organization, W. H. (1989). Indoor air quality: organic pollutants.
41. Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016). Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules, 21(1), 56.
42. Bakheet, A. A., Mohd Zain, M. F., Kadhum, A. A., & Abdalla, Z. (2011). Photocatalytic oxidation performance to removal of volatile organic compounds in indoor environment. Environmental Research, Engineering and Management, 58(4), 27-33.
43. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook
44. Becker, K., Zhu, W., & Lopez, J. (2015). Microplasmas: Environmental and Biological Applications Encyclopedia on plasma technology: Taylor and Francis Inc.
45. Israelachvili, J. N. (2011). Intermolecular and surface forces: Academic press.
46. Li, G., Lv, L., Fan, H., Ma, J., Li, Y., Wan, Y., & Zhao, X. (2010). Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase. Journal of colloid and interface science, 348(2), 342-347.
47. Dhada, I., Nagar, P. K., & Sharma, M. (2015). Challenges of TiO2-based photooxidation of volatile organic compounds: designing, coating, and regenerating catalyst. Industrial & Engineering Chemistry Research, 54(20), 5381-5387.
48. Zheng, K., Zhang, T.-c., Lin, P., Han, Y.-h., Li, H.-y., Ji, R.-j., & Zhang, H.-y. (2015). 4-Nitroaniline Degradation by TiO2 Catalyst Doping with Manganese. Journal of Chemistry, 2015.
49. White, L., Koo, Y., Yun, Y., & Sankar, J. (2013). TiO 2 deposition on AZ31 magnesium alloy using plasma electrolytic oxidation. Journal of Nanomaterials, 2013, 11.
50. Cai, Y., Strømme, M., & Welch, K. (2013). Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation. PLoS One, 8(10), e75929.
51. Li, W., Liang, R., Hu, A., Huang, Z., & Zhou, Y. N. (2014). Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO 2 photocatalysts. RSC Advances, 4(70), 36959-36966.
52. Desai, V. S., & Meenal, K. (2009). Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique. Research Journal of Microbiology, 4(3), 97-103.
53. Heineman, D. L. (2004). Optimization of ALD grown titania thin films for the infiltration of silica photonic crystals. Georgia Institute of Technology.
54. Moellmann, J., Ehrlich, S., Tonner, R., & Grimme, S. (2012). A DFT-D study of structural and energetic properties of TiO2 modifications. Journal of physics: condensed matter, 24(42), 424206.
55. Zhang, H., He, X., Zhao, W., Peng, Y., Sun, D., Li, H., & Wang, X. (2017). Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants. Water Science and Technology, 75(7), 1523-1528.
56. Jallouli, N., Elghniji, K., Trabelsi, H., & Ksibi, M. (2017). Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arabian Journal of Chemistry, 10, S3640-S3645.
57. Nguyen-Phan, T.-D., & Shin, E. W. (2011). Morphological effect of TiO2 catalysts on photocatalytic degradation of methylene blue. Journal of Industrial and Engineering Chemistry, 17(3), 397-400.
58. Chen, J., & Yang, R. (1990). Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3. Journal of Catalysis, 125(2), 411-420.
59. Kurtoglu, M. E., Longenbach, T., & Gogotsi, Y. (2011). Preventing sodium poisoning of photocatalytic TiO2 films on glass by metal doping. International Journal of Applied Glass Science, 2(2), 108-116.
60. Castro, Y., Arconada, N., & Durán, A. (2015). Synthesis and photocatalytic characterisation of mesoporous TiO2 films doped with Ca, W and N. Boletín de la Sociedad Española de Cerámica y Vidrio, 54(1), 11-20.
61. Soares, E. T., Lansarin, M. A., & Moro, C. C. (2007). A study of process variables for the photocatalytic degradation of rhodamine B. Brazilian Journal of Chemical Engineering, 24(1), 29-36.
62. Murzin, D. Y. (2008). On Langmuir kinetics and zero order reactions. Catalysis Communications, 9(9), 1815-1816.
63. Zhong, L., Lee, C.-S., Haghighat, F., & Bahloul, A. (2016). Deactivation and ultraviolet C-induced regeneration of photocatalytic oxidation air filters. Science and Technology for the Built Environment, 22(5), 576-585
64. Andriantsiferana, C., Mohamed, E. F., & Delmas, H. (2015). Sequential adsorption-photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon. Environmental Engineering Research, 20(2), 181-189.
65. Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1-3), 46-52.
校內:2023-07-13公開