簡易檢索 / 詳目顯示

研究生: 莊宜倫
Chuang, Yi-Lun
論文名稱: TLR4及其所調控之發炎反應在糖尿病腎病的角色
Toll-like receptor 4 and its mediated inflammatory response in the development of diabetic nephropathy
指導教授: 蔡曜聲
Tsai, Yau-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 61
中文關鍵詞: 糖尿病腎病發炎反應TLR4傷害相關物質
外文關鍵詞: Diabetic nephropathy, inflammation, TLR4, DAMPs
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病腎病 (diabetic nephropathy) 是多種糖尿病併發症之一,且為末期腎衰竭的主要原因,近幾年的研究證實發炎反應 (inflammation) 在糖尿病腎病中扮演重要的角色。在發炎反應中,已知可由toll-like receptors (TLRs) 啟動且辨認外來病原 (病原相關物質) 或來自受傷細胞所釋放的物質 (傷害相關物質)。研究顯示TLRs及其內生性配合體 (endogenous ligands) 皆在第二型糖尿病病患的單核細胞 (monocyte) 中顯著升高。同樣地,TLR2及其endogenous ligands在糖尿病腎病的大鼠腎臟中顯著增加。本實驗室之前的研究也發現在糖尿病腎病的小鼠腎臟中,TLR4 mRNA明顯增加。研究更指出,TLR4參與在ischemia/reperfusion引起的腎臟病變中,顯示TLR4在調控腎臟病變中扮演著重要角色。在糖尿病腎病的初期,血液中的白蛋白 (albumin) 便會通過腎絲球之過濾系統而到達腎小管管腔,這些通過腎絲球的白蛋白也被證實會促使近腎小管細胞發炎。根據以上文獻及實驗結果,可假設糖尿病的高血糖及到達腎小管的白蛋白活化TLR4所調控之發炎反應,進一步造成腎臟細胞損傷而加速糖尿病腎病形成。首先,為了確定TLR4在糖尿病腎病的角色,我們使用TLR4缺失小鼠 (Tlr4-/-) 並刺激引起糖尿病後觀察其腎臟功能是否較wild-type (WT) 控制組好。結果顯示,當TLR4缺失後,蛋白尿 (albuminuria) 與WT相比有回復的現象。除此之外,我們檢測了腎臟當中chemokines (MCP1、MIP2、IP10)、macrophage maker (F4/80)以及腎臟肥大因子 (TGF-β、fibronectin、collagen type Ⅳ) mRNA,在TLR4缺失的糖尿病小鼠的腎臟中,這些基因的表達量都較WT控制組低。由此可知,在糖尿病腎病中TLR4的缺失降低了發炎反應並進一步延緩了蛋白尿的發生。接著我們利用免疫組織染色的方法來觀察表現TLR4的細胞。實驗結果顯示,在糖尿病鼠的腎臟中,TLR4表現量會增加且主要表現在擴張的近腎小管。我們同時檢測 TLR4的內生性配合體 Heat shock protein 70 (Hsp70) 的表現量, Hsp70在糖尿病小鼠的腎臟表現量較控制組高。這些結果顯示著在糖尿病腎病中,TLR4調控的發炎反應主要位在近腎小管細胞且持續被其內生性配合體所活化。為了探討糖尿病中哪些分子會活化TLR4所調控之發炎反應及其下游的路徑,我們利用LLC-PK1這株近腎小管細胞來進行進一步的實驗。在給予細胞高濃度葡萄糖 (HG) 或含有白蛋白 (albumin) 的培養液24小時後,細胞MCP1及TNFα mRNA的表達量會顯著的升高。而若同時給予NF-ĸB的抑制物 CAPE之後,原本被HG或是albumin所刺激的MCP1 mRNA則會降低。除此之外,我們檢測了培養過細胞的培養液 (cell cultured medium),Hsp70在albumin-treated conditioned medium中會顯著的增加。更進一步,當給與細胞這albumin-treated conditioned medium會促使細胞表達MCP1及TNFα。由以上可知,傷害相關物質會在albumin-treated conditioned medium中增加且活化發炎反應。總結我們的實驗結果,我們認為在糖尿病腎病中,TLR4的內生性配合體活化TLR4所調控之發炎反應且加速蛋白尿的形成而使得糖尿病腎病更為嚴重。

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Toll-like receptors (TLRs) are conserved in many species and recognize pathogen- and damage-associated molecular patterns (DAMPs). Studies showed that TLRs and TLR ligands were increased in the monocytes of T2DM patients, as well as in the kidney of diabetic rat. In addition, our previous results showed that TLR4 was highly expressed in the kidney from streptozotocin-induced DM mice. Furthermore, TLR4 was shown to be participated in the kidney ischemia/reperfusion injury, suggesting that TLR4 plays a role in kidney injury. Leakage of albumin into renal tubules is detected in the early stage of DN after hyperglycemia, and in vitro study showed that albumin induced renal proximal tubular cell inflammation. Therefore, we hypothesized that high glucose (HG) and/or albumin activate TLR4-mediated inflammatory response in renal cells and accelerate the development of DN. To study the role of TLR4, we employed TLR4-deficient mice and found that kidney dysfunction characterized by albuminuria was attenuated in diabetic Tlr4-/- mice. Moreover, up-regulations of chemokines (MCP1, MIP2 and IP10), macrophage maker (F4/80) and renal fibrosis factors (TGF-β, fibronectin and collagen type Ⅳ) were all attenuated in the kidney of Tlr4-/- diabetic mice. These data suggested that TLR4 deficiency ameliorated renal inflammation and improved the renal dysfunction in DN. Immunohistochemistry analysis revealed that TLR4 was expressed in renal proximal and distal tubules in the kidney of control mice, and it was up-regulated in dilated proximal tubules in the kidney of DM mice. Moreover, Hsp70, one of potential DAMPs of TLR4, was significantly increased in the kidney of diabetic mice. These suggested that TLR4-mediated inflammation takes place specifically in tubular cells under the stimulation of its potential endogenous ligands in DN. To investigate the upstream and downstream factors of TLR4-mediated inflammation, we further employed LLC-PK1, a porcine proximal tubular cell line. Compared to LG controls, mRNA levels of MCP1 and TNFα were significantly up-regulated in LLC-PK1 cells treated with high glucose (HG) or albumin. The increased expression of MCP1 induced by HG or albumin was attenuated by NF-ĸB inhibitor, CAPE. Furthermore, Hsp70 was increased in the cultured medium of LLC-PK1 cells treated with albumin but not with HG. The Hsp70 in albumin-treated conditioned medium further induced the expression of MCP1 and TNFα in LLC-PK1 cells. These indicated that DAMPs in the conditioned medium of LLC-PK1 cells treated with albumin activated inflammatory responses in renal cells. Thus, our study emphasizes the importance of TLR4 in regulating inflammation by engagement with potential endogenous ligands released from damaged renal cells caused by high glucose or albumin in the development of DN. These further provide a basis for therapeutic strategies to prevent or treat DN.

    INTRODUCTION 1 Diabetes 1 Diabetic nephropathy 2 Treatment of DN 2 DN as an inflammatory disease 3 Elevated blood glucose in DM condition 4 Albumin leakage into renal tubules 4 Toll-like receptor 4 (TLR4) 5 Sterile inflammation 6 TLR4 and kidney disease 6 Significance 7 MATERIALS AND METHODS 8 Animal 8 Induction of diabetes using STZ 8 Diabetic phenotyping 9 Storage of tissue samples 9 Histology, IHC and IF 10 Determination of albuminuria 12 Tissue RNA extraction 12 Cell culture 13 Cell RNA extraction 14 Cell Protein Extraction 15 Cultured Medium Protein Extraction 15 Reverse transcription and real-time PCR 15 Western blot 15 Data analysis 16 RESULT 17 Deficiency of TLR4 attenuated the albuminuria in diabetic mice 17 Renal inflammation was attenuated in Tlr4-/- diabetic mice 18 Mouse and human TLR4 were expressed on renal proximal and distal tubules in kidney of DN 19 Increased Hsp70 in the kidney of diabetic mice 20 High glucose or albumin increase the expression of MCP1 and TNFα in LLC-PK1 cells 21 High glucose or albumin induce the translocation of NF-ĸB into nucleus in LLC-PK1 cells 21 Increased Hsp70 in the cultured medium of LLC-PK1 cells treated with albumin 22 The cultured medium of LLC-PK1 cells treated with albumin induces MCP1 and TNFα expression in LLC-PK1 cells 23 DISCUSSION 25 REFERENCE 34 APPENDIX 59

    1. Hossain, P., Kawar, B., and El Nahas, M. 2007. Obesity and diabetes in the developing world--a growing challenge. N Engl J Med 356:213-215.
    2. Rother, K.I. 2007. Diabetes treatment--bridging the divide. N Engl J Med 356:1499-1501.
    3. Rossing, P., and de Zeeuw, D. 2011. Need for better diabetes treatment for improved renal outcome. Kidney Int 79 Suppl 120:S28-32.
    4. Association, A.D. 2004. Nephropathy in Diabetes. Diabetes Care 27:579-583.
    5. Dronavalli, S., Duka, I., and Bakris, G.L. 2008. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444-452.
    6. Kanwar, Y.S. 2011. A Glimpse of Various Pathogenetic Mechanisms of Diabetic Nephropathy. Annu. Rev. Pathol. Mech. Dis. 6:395-423.
    7. Israili, Z.H., and Hall, W.D. 1992. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 117:234-242.
    8. Mezzano, S., Droguett, A., Burgos, M.E., Ardiles, L.G., Flores, C.A., Aros, C.A., Caorsi, I., Vio, C.P., Ruiz-Ortega, M., and Egido, J. 2003. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl:S64-70.
    9. Saraheimo, M., Teppo, A.M., Forsblom, C., Fagerudd, J., and Groop, P.H. 2003. Diabetic nephropathy is associated with low-grade inflammation in Type 1 diabetic patients. Diabetologia 46:1402-1407.
    10. Kelly, K.J., and Dominguez, J.H. 2010. Rapid progression of diabetic nephropathy is linked to inflammation and episodes of acute renal failure. Am J Nephrol 32:469-475.
    11. Navarro, J.F., Mora, C., Muros, M., and Garcia, J. 2005. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. J Am Soc Nephrol 16:2119-2126.
    12. Dasu, M.R., Devaraj, S., Park, S., and Jialal, I. 2010. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861-868.
    13. Dasu, M.R., Devaraj, S., and Jialal, I. 2007. High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab 293:E337-346.
    14. Dasu, M.R., Devaraj, S., Zhao, L., Hwang, D.H., and Jialal, I. 2008. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57:3090-3098.
    15. Guha, M., Bai, W., Nadler, J.L., and Natarajan, R. 2000. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem 275:17728-17739.
    16. Wilmer, W.A., Dixon, C.L., and Hebert, C. 2001. Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int 60:858-871.
    17. Susztak, K., Raff, A.C., Schiffer, M., and Bottinger, E.P. 2006. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225-233.
    18. Ha, H., Yu, M.R., Choi, Y.J., Kitamura, M., and Lee, H.B. 2002. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol 13:894-902.
    19. McCord, A.M., Burgess, A.W., Whaley, M.J., and Anderson, B.E. 2005. Interaction of Bartonella henselae with endothelial cells promotes monocyte/macrophage chemoattractant protein 1 gene expression and protein production and triggers monocyte migration. Infect Immun 73:5735-5742.
    20. Li, J., and Gobe, G. 2006. Protein kinase C activation and its role in kidney disease. Nephrology (Carlton) 11:428-434.
    21. Noh, H., and King, G.L. 2007. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl:S49-53.
    22. Wolf, G. 2004. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34:785-796.
    23. Lee, F.T., Cao, Z., Long, D.M., Panagiotopoulos, S., Jerums, G., Cooper, M.E., and Forbes, J.M. 2004. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol 15:2139-2151.
    24. Chow, F.Y., Nikolic-Paterson, D.J., Ozols, E., Atkins, R.C., Rollin, B.J., and Tesch, G.H. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 69:73-80.
    25. Navarro, J.F., Milena, F.J., Mora, C., Leon, C., and Garcia, J. 2006. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 26:562-570.
    26. Nakamura, T., Fukui, M., Ebihara, I., Osada, S., Nagaoka, I., Tomino, Y., and Koide, H. 1993. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 42:450-456.
    27. Sugimoto, H., Shikata, K., Wada, J., Horiuchi, S., and Makino, H. 1999. Advanced glycation end products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: aminoguanidine ameliorates the overexpression of tumour necrosis factor-alpha and inducible nitric oxide synthase in diabetic rat glomeruli. Diabetologia 42:878-886.
    28. Navarro, J.F., Milena, F.J., Mora, C., Leon, C., Claverie, F., Flores, C., and Garcia, J. 2005. Tumor necrosis factor-alpha gene expression in diabetic nephropathy: relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition. Kidney Int Suppl:S98-102.
    29. DiPetrillo, K., Coutermarsh, B., and Gesek, F.A. 2003. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284:F113-121.
    30. DiPetrillo, K., and Gesek, F.A. 2004. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am J Nephrol 24:352-359.
    31. Abbate, M., Zoja, C., and Remuzzi, G. 2006. How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17:2974-2984.
    32. Perico, N., Benigni, A., and Remuzzi, G. 2008. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. Nat Rev Drug Discov 7:936-953.
    33. Strutz, F.M. 2009. EMT and proteinuria as progression factors. Kidney Int 75:475-481.
    34. Chang, S.S. 2008. Albuminuria and diabetic nephropathy. Pediatr Endocrinol Rev 5 Suppl 4:974-979.
    35. Wang, Y., Chen, J., Chen, L., Tay, Y.C., Rangan, G.K., and Harris, D.C. 1997. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 8:1537-1545.
    36. Zoja, C., Donadelli, R., Colleoni, S., Figliuzzi, M., Bonazzola, S., Morigi, M., and Remuzzi, G. 1998. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int 53:1608-1615.
    37. Tang, S., Leung, J.C., Abe, K., Chan, K.W., Chan, L.Y., Chan, T.M., and Lai, K.N. 2003. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest 111:515-527.
    38. Donadelli, R., Abbate, M., Zanchi, C., Corna, D., Tomasoni, S., Benigni, A., Remuzzi, G., and Zoja, C. 2000. Protein traffic activates NF-kB gene signaling and promotes MCP-1-dependent interstitial inflammation. Am J Kidney Dis 36:1226-1241.
    39. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
    40. Akira, S., Takeda, K., and Kaisho, T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675-680.
    41. Medzhitov, R. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-397.
    42. Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-2088.
    43. Akira, S., and Takeda, K. 2004. Toll-like receptor signalling. Nat Rev Immunol 4:499-511.
    44. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-145.
    45. Kono, H. 2008. How dying cells alert the immune system to danger. Nature Reviews Immunology 8:279-289.
    46. Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, G.D., Mascarenhas, M.M., Garg, H.G., Quinn, D.A., et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173-1179.
    47. Scheibner, K.A., Lutz, M.A., Boodoo, S., Fenton, M.J., Powell, J.D., and Horton, M.R. 2006. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272-1281.
    48. Schaefer, L., Babelova, A., Kiss, E., Hausser, H.J., Baliova, M., Krzyzankova, M., Marsche, G., Young, M.F., Mihalik, D., Gotte, M., et al. 2005. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223-2233.
    49. Kim, S., Takahashi, H., Lin, W.W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J.L., and Karin, M. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102-106.
    50. Schlondorff, D.O. 2008. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int 74:860-866.
    51. Anders, H.-J. 2004. Signaling Danger: Toll-Like Receptors and their Potential Roles in Kidney Disease J Am Soc Nephrol 15:854-867.
    52. Wu, H., Chen, G., Wyburn, K.R., Yin, J., Bertolino, P., Eris, J.M., Alexander, S.I., Sharland, A.F., and Chadban, S.J. 2007. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847-2859.
    53. Pulskens, W.P., Rampanelli, E., Teske, G.J., Butter, L.M., Claessen, N., Luirink, I.K., van der Poll, T., Florquin, S., and Leemans, J.C. 2010. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21:1299-1308.
    54. Zhang, B., Ramesh, G., Uematsu, S., Akira, S., and Reeves, W.B. 2008. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19:923-932.
    55. K. NATARAJAN, S.S., TERRENCE R. BURKE, JR., DEZIDER GRUNBERGER, AND BHARAT B. AGGARWAL. 1996. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-KB. Proc. Natl. Acad. Sci. 93:9090-9095.
    56. Mkaddem, S.B., Werts, C., Goujon, J.M., Bens, M., Pedruzzi, E., Ogier-Denis, E., and Vandewalle, A. 2009. Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells. J Biol Chem 284:12541-12549.
    57. Ping L. Zhang, M.L., Charles M. Schworer, Thomas M. Blasick, Kathryn K. Masker,, and Jay B. Jones, a.D.J.C. 2008. Heat Shock Protein Expression Is Highly Sensitive to Ischemia-Reperfusion Injury in Rat Kidneys. Annals of Clinical & Laboratory Science 38:57-64.
    58. Andreas Lang, D.B., Frank Eitner, Daniel Engel, Svenja Ehrlich, Minka Breloer, Emma Hamilton-Williams, Sabine Specht, Achim Hoerauf, Jürgen Floege, Arne von Bonin and Christian Kurts. 2005. Heat Shock Protein 60 Is Released in Immune-Mediated Glomerulonephritis and Aggravates Disease: In Vivo Evidence for an Immunologic Danger Signal J Am Soc Nephrol 16:383-391.
    59. Li, F., Yang, N., Zhang, L., Tan, H., Huang, B., Liang, Y., Chen, M., and Yu, X. 2010. Increased expression of toll-like receptor 2 in rat diabetic nephropathy. Am J Nephrol 32:179-186.
    60. Endou, A.T.a.H. 1992. Intrarenal handling of proteins in rats using fractional micropuncture technique. Am J Physiol. 263:F601-F606.
    61. Christensen, E.I., and Birn, H. 2001. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 280:F562-573.
    62. Russo, L.M., Sandoval, R.M., McKee, M., Osicka, T.M., Collins, A.B., Brown, D., Molitoris, B.A., and Comper, W.D. 2007. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71:504-513.
    63. Russo, L.M., Sandoval, R.M., Campos, S.B., Molitoris, B.A., Comper, W.D., and Brown, D. 2009. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 20:489-494.
    64. Ishibashi, F. 2004. High glucose reduces albumin uptake in cultured proximal tubular cells (LLC-PK1). Diabetes Res Clin Pract 65:217-225.
    65. Russo, L.M., del Re, E., Brown, D., and Lin, H.Y. 2007. Evidence for a role of transforming growth factor (TGF)-beta1 in the induction of postglomerular albuminuria in diabetic nephropathy: amelioration by soluble TGF-beta type II receptor. Diabetes 56:380-388.
    66. Steven P. Clavant, J.M.F., Vicki Thallas, Tanya M. Osicka, George Jerums, Wayne D. Comper. 2003. Reversible Angiotensin II-Mediated Albuminuria in Rat Kidneys Is Dynamically Associated with Cytoskeletal Organization. Nephron Physiol 93:51-60.
    67. CM., E.A.a.G. 1995. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney international 47:1546-1557.
    68. Sridevi Devaraj, P.T., Balakuntalam S. Kasinath, Rajendra Ramsamooj, Alaa Afify, Ishwarlal Jialal. 2011. Knockout of Toll-Like Receptor-2 Attenuates Both the Proinflammatory State of Diabetes and Incipient Diabetic Nephropathy. Arterioscler Thromb Vasc Biol. 2011.
    69. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
    70. Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L., and Aderem, A. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97:13766-13771.
    71. Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., and Akira, S. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933-940.
    72. Grunberger, D., Banerjee, R., Eisinger, K., Oltz, E.M., Efros, L., Caldwell, M., Estevez, V., and Nakanishi, K. 1988. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44:230-232.
    73. Chuang, Y.T., Lin, Y.C., Lin, K.H., Chou, T.F., Kuo, W.C., Yang, K.T., Wu, P.R., Chen, R.H., Kimchi, A., and Lai, M.Z. 2011. Tumor suppressor death-associated protein kinase is required for full IL-1beta production. Blood 117:960-970.
    74. Cai, W.F., Zhang, X.W., Yan, H.M., Ma, Y.G., Wang, X.X., Yan, J., Xin, B.M., Lv, X.X., Wang, Q.Q., Wang, Z.Y., et al. 2010. Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice. Cardiovasc Res 88:140-149.
    75. Jakus, V., and Rietbrock, N. 2004. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53:131-142.
    76. Jandeleit-Dahm, K., and Cooper, M.E. 2006. Hypertension and diabetes: role of the renin-angiotensin system. Endocrinol Metab Clin North Am 35:469-490, vii.
    77. Sharma, K., and Ziyadeh, F.N. 1995. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44:1139-1146.
    78. Ziyadeh, F.N., and Wolf, G. 2008. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4:39-45.

    下載圖示 校內:立即公開
    校外:2014-08-26公開
    QR CODE