| 研究生: |
陳建憲 Chen, Chien-Hsien |
|---|---|
| 論文名稱: |
應用濃度梯度微流體晶片與微壓印技術探討細胞於葡萄糖最適濃度之研究 Study of Cell Optimizing Glucose Concentration by Using Concentration Gradient Microfluidic Chips and Micro-imprinting Technology |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 微機電系統 、微流體濃度梯度晶片 、微壓印技術 、內皮細胞 、葡萄糖 |
| 外文關鍵詞: | Endothelial Cells, Microimprinting Technology, Concentration Gradient Microfluidic Chip, Glucose, MEMS |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微機電系統製程技術之灌注成形法以及微壓印技術,完成聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)微流體濃度梯度晶片之製備,以應用於內皮細胞對葡萄糖最適濃度之研究。研究策略為利用微混合器及多層分流微結構以於PDMS微流道產生一濃度梯度效應,且比較不同流速對於濃度梯度效應之影響;另外,再透過細胞貼附區寬度為300 μm且間距為200 μm之壓印圖形,以探討在不同葡萄糖濃度梯度(0~10%、0~20%、5~15%、6~17%)下,對於內皮細胞之最適濃度。經實驗驗證在不同流速(20、30、40、50 μL/min)下濃度梯度皆呈現穩定分佈,流速超過20 μL/min進行實驗時,因流速過快會造成細胞脫落之現象,且內皮細胞對於葡萄糖之最適濃度為7~15%,而當葡萄糖濃度過高或過低於此最適濃度值時皆會造成內皮細胞萎縮或凋亡之現象。故本研究所建立的微流體濃度梯度晶片系統,不但可解決傳統藥物濃度調配上相當費時且無法於同一實驗區內進行多種濃度測試的問題,在未來將有助於藥物濃度測試及藥物過敏測試等應用領域的發展
In this study, the Polydimethylsilcoxane (PDMS) concentration gradient microfluidic chip and PDMS stamp are fabricated by MEMS, casting molding, and microimprinting technology. The chip is used to research optimizing concentration of endothelial cells on glucose concentration gradient. The experiment strategy is based on a microfluidic network to generate a concentration gradient in solution, and observes the effect of concentration gradient in different flow rates. Besides, it combines micropatterns that cell adhesion space width with 300 μm and gap with 200 μm to discuss the optimizing glucose concentration (0~10%, 0~20%, 5~15%, 6~17%) of endothelial cells. Through the experiment data, we can prove that the concentration gradients are all stable under different flow rates (20, 30, 40, 50 μL/min), however, when flow rates are over 20 μL/min, cell leaves substrate surface. The result shows that the glucose concentration gradient in the 7~15% is the optimizing concentration of endothelial cells, nevertheless, too high and low concentration will lead cell to leave or die. This study can solve the problems of the different drug concentrations prepare and test. It will apply drug concentration test and hypersensitive test in the future.
[1]D. A. Stenger, G. W. Gross, E. W. Keefer, K. M. Shaffer, J. D. Andreadis, W. Ma, and J. J. Pancrazio, “Detection of physiologically active compounds using cell-based biosensors,” Trends in Biotechnology, 19, pp. 304-309, 2001.
[2]L. G. Griffith and G. Naughton, “Tissue engineering-current challenges and expanding opportunities,” Science, 295, pp. 1009-1014, 2000.
[3]D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” Journal of Neuroscience, 8, pp. 4098-4120, 1988.
[4]S. N. Bhatia, M. L. Yarmush, and M. Toner, “Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts,” Journal of Biomedical Materials Research, 34, pp. 189-199, 1997.
[5]D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, and M. Bastmeyer, “Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion,” Journal of Cell Science, 117, pp. 41-52, 2004.
[6]K. Seiler, D. J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monition systems,” Journal of Chromatography, 593, pp. 253-258, 1992.
[7]Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, pp. 551-575, 1998.
[8]L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical Chemistry, 69, pp. 4783-4789, 1997.
[9]H. Becker and U. Heim, "Polymer hot embossing with silicon master structures," Sensors and Materials, 11, pp. 297-304, 1999.
[10]M. Heckele, W. Bacher, and K. D. Muller, "Hot embossing - The molding technique for plastic microstructures," Microsystem Technologies, 4, pp. 122-124, 1998.
[11]H. Becker, and U. Heim, "Hot embossing as a method for the fabrication of polymer high aspect ratio structures," Sensors and Actuators a-Physical, 83, pp. 130-135, 2000.
[12]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science, 272, pp. 85-87, 1996.
[13]R. W. Jaszewski, and P. Smith, "Hot embossing in polymers as a direct way to pattern resist," Microelectronic Engineering, 42, pp. 575-578, 1998.
[14]L. E. Locascio, C. E. Perso, and C. S. Lee, "Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate," Journal of Chromatography A, 857, pp. 275-284, 1999.
[15]M. Rode, and B. Hillerich, "Self-aligned positioning of microoptical components by precision prismatic grooves impressed into metals," Journal of Microelectromechanical Systems, 8, pp. 58-64, 1999.
[16]D. Snakenborg, H. Klank, and J. P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, pp. 182-189, 2004.
[17]K. S. Huang, T. H. Lai, and Y. C. Lin, “Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles,” Lab on a Chip, 6, pp. 954-957, 2006.
[18]K. S. Huang, T. H. Lai, and Y. C. Lin, “Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation,” Frontiers in Bioscience, 12, pp. 3061-3067, 2006.
[19]R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, pp. 2626-2630, 1997.
[20]P. J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, 171, pp. 37-38, 1953.
[21]D. A. Drew, and R. T. Lahey, “Phase-distribution mechanisms in turbulent low-quality 2-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, pp. 91-106, 1982.
[22]J. Takagi, M. Yamada, M. Yasuda, and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab on a Chip, 5, pp. 778-784, 2005.
[23]S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, 82, pp. 364-366, 2003.
[24]I. Kobayashi, S. Mukataka, and M. Nakajima, “Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions,” Langmuir, 21, pp. 7629-7632, 2005.
[25]K. Liu, H. J. Ding, J. Liu, Y. Chen, and X. Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 22, pp. 9453-9457, 2006.
[26]H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, “Microfluidic production of biopolymer microcapsules with controlled morphology,” Journal of the American Chemical Society, 128, pp. 12205-12210, 2006.
[27]X. Jiang, Q. Xu, S. K. W. Dertinger, A. D. Stroock, T. Fu, and G. M. Whitesides, “A general method for patterning gradients of biomolecules on surfaces using microfluidic networks,” Analytical Chemistry, 77, pp. 2338-2347, 2005.
[28]R. M. Lorenz, G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, M. He, and D. T. Chiu, “Simultaneous generation of multiple aqueous droplets in a microfluidic device,” Analytica Chimica Acta, 630, pp. 124-130, 2008.
[29]X. Zhu, L. Y. Chu, B. Chueh, M. Shen, B. Hazarika, N. Phadke, and S. Takayama, “Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation,” Analyst, 129, pp. 1026-1031, 2004.
[30]S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, “Generation of gradients having complex shapes using microfluidic networks,” Analytical Chemistry, 73, pp. 1240-1246, 2001.
[31]T. H. Park, and M. L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnology Progress, 19, pp. 243-253, 2003.
[32]A. Folch, and M. Toner, “Microengineering of cellular interactions,” Annual Review of Biomedical Engineering, 2, pp. 227-256, 2000.
[33]C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz, and D. Chatenay, “Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces,” Journal of Neuroscience Methods, 117, pp. 123-131, 2002.
[34]Y. Katanosaka, J. H. Bao, T. Komatsu, T. Suemori, A. Yamada, S. Mohri, and K. Naruse, “Analysis of cyclic-stretching responses using cell-adhesion-patterned cell,” Journal of Biotechnology, 133, pp. 82-89, 2008.
[35]T. Das, S. K. Mallick, D. Paul, and T. K. Maiti, “Microcontact printing of concanavalin a and its effect on mammalian cell morphology,” Journal of Colloid and Interface Science, 314, pp. 71-79, 2007.
[36]S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning cells and their environments using multiple laminar fluid flows in capillary networks,” Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 5545-5548, 1999.
[37]S. Takayama, E. Ostuni, X. P. Qian, J. C. McDonald, X. Y. Jiang, P. LeDuc, M. H. Wu, D. E. Ingber, and G. M. Whitesides, “Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries,” Advanced Materials, 13, pp. 570-574, 2001.
[38]S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, “Laminar flows - subcellular positioning of small molecules,” Nature, 411, pp. 1016, 2001.
[39]Y. D. Kim, C. B. Park, and D. S. Clark, “Stable sol-gel microstructured and microfluidic networks for protein patterning,” Biotechnology and Bioengineering, 73, pp. 331-337, 2001.
[40]Y. Li, B. Yuan, H. Ji, D. Han, S. Chen, F. Tian, and X. Jiang, “A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels,” Angewandte Chemie-International Edition, 46, pp. 1094-1096, 2007.
[41]A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabiricated elastomeric stencils for micropatterning cell cultures,” Journal of Biomedical Materials Research, 52, pp. 346-353, 2000.
[42]N. E. Sanjana, and S. B. Fuller, “A fast flexible ink-jet printing method for patterning dissociated neurons in culture,” Journal of Neuroscience Methods, 136, pp. 151-163, 2004.
[43]M. Bani-Yaghoub, R. Tremblay, R. Voicu, G. Mealing, R. Monette, C. Py, K. Faid, and M. Sikorska, “Neurogenesis and neuronal communication on micropatterned neurochips,” Biotechnology and Bioengineering, 92, pp. 336-345, 2005.
[44]http://www.microchem.com/, Specialty electronic materials for emerging and niche lithographic processes, 2005.
[45]H. Andersson, C. Jönsson, C. Moberg, and G. Stemme, “Consecutive microcontact printing-ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B, 79, pp. 78-84, 2001.
[46]B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-Dimensional Micro-Channel Fabrication in PDMS Elastomer,” Journal of Microelectromechanical Systems, 9, pp. 76-81, 2000.