簡易檢索 / 詳目顯示

研究生: 周瑋千
Chou, Wei-chien
論文名稱: 電信通信機房電力維運決策支援系統
A management decision support system for telecommunication office power system
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 75
中文關鍵詞: 群體決策電信機房維運模糊理論修正式德爾菲法多準則決策
外文關鍵詞: fuzzy theory, fuzzy modified Delphi method, telecommunication office operation, multi-criteria decision, group decision
相關次數: 點閱:93下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電信機房為通信設備工作環境中重要的基礎建設,而電力為通信設備的動力來源;通信設備須有充裕而穩定可靠的電源,才能確保通信設備正常運作。隨著世界電信事業自由化、國際化及民營化浪潮的推動,通信設備技術日益進步,電信機房提供不同以往之加值服務,需求更趨多元化,對通信品質的要求更為嚴格。為滿足各種設備之要求及提升電信機房之電力品質,必須將有限的資源作最佳運用,才能提升對新技術發展的應變能力,進而創造最大利潤與競爭力。

      本研究目的建構出一決策支援系統,以支援電信通信機房電力維運策略之制定。第一部份採用模糊修正式德爾菲法萃取專家內隱知識,用以評估並決定電信機房電力之準則與權重;第二部分,由專家評定各評估準則之重要性與各機房適合度,進而系統化地整合電信領域專家的意見於決策模型的建構上,本研究並以國內某大電信公司電力機房維運作為實例驗證對象,並結合知識發現法探勘分類知識法則,探討同類機房內部相似特性與不同類機房間的差異性,以輔助決策者訂定各類機房不同的電源設置與備援標準之管理維運模式。

      The telecommunication office is the most important infrastructure of communication equipments, and power is the heart of telecom facilities. To be operated normally, the communication equipments need stable and consistent power supply. Following the wave of global liberalization, internationalization and privatization on telecommunication industry, the rapid development of the telecom facilities technology is increasing. The telecom office supporting value-added service that is different from the past and demand tends to be more diversified and stringent on the communications quality. To meet the requirements of various equipments and upgrade power quality, we must make the best use of limited resources. Only by doing so can we increase our impact on new technologies, and then create the biggest profit.

      In this study, we propose a decision support system to support power maintenance strategies for telecommunication office. First, the fuzzy modified Delphi method is used to extract implicit knowledge of experts and assess criteria for deciding weightings. Then, according to the criteria and suitability for telecom office assessment, the assessments of telecommunications experts are aggregated to build up the decision model in the proposed system. This study uses a major player in Taiwan Telecommunication as the case study and incorporates the knowledge discovery approach to uncover the classification knowledge rules which could assist management in developing effective management strategies. We also implement and explore if it will enhance readability and simplify the decision-making task for the differences between management modes and types of power system in each telecom site.

    摘 要 I Abstract II 致 謝 IV 目 錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 - 1 -  1.1 研究背景與動機 - 1 -  1.2 研究目的 - 4 -  1.3 研究流程與架構 - 5 -  1.4 研究大綱 - 5 - 第二章 文獻探討 - 8 -  2.1 電力系統設置維運管理 - 8 -  2.2 模糊修正型德爾菲法 (Fuzzy Modified Delphi Method) - 12 -  2.3 多準則決策 (Multi-Criteria Decision Making, MCDM) - 15 -   2.3.1 模糊多準則決策 (Fuzzy MCDM) - 16 -   2.3.2 模糊偏好關係法 (Fuzzy Preference Relation, Fuzzy PreRa) - 17 -  2.4 模糊集合理論 (Fuzzy Set theory) - 18 -   2.4.1 模糊理論概述 - 19 -   2.4.2 模糊數與語意變數 - 19 -   2.4.3 解模糊化(Defuzzification)與模糊數排序 (Fuzzy Ranking) - 21 -  2.5 群體決策整合 - 23 -   2.5.1 FLOWA (Fuzzy Linguistic Ordered Weighted Average) - 24 -   2.5.2 模糊權重平均法 (Fuzzy Weighted Average, FWA) - 24 - 第三章 研究方法 - 26 -  3.1 模式架構 - 26 -  3.2 評估準則之建立 - 28 -   3.2.1 模糊德爾菲法選定評估準則 - 28 -   3.2.2 模糊偏好關係法衡量構面及準則間權重 - 29 -   3.2.3 整合構面及決定準則權重 - 31 -  3.3 模糊多準則決策模式之建構 - 34 -   3.3.1 定義語意變數與準則之評估 - 34 -   3.3.2 整合決策者給定各機房之評估值 - 36 -   3.3.3 解模糊化及排序 - 37 -   3.3.4 分類屬性及法則探討 - 38 - 第四章 電信機房電力系統評估決策應用 - 40 -  4.1 電信通信機房電力維運決策支援系統建構 - 40 -   4.1.1 系統建構說明 - 40 -   4.1.2 評選因子調查與評估機房選定 - 42 -   4.1.3 屬性權重評估 - 45 -   4.1.4 電信機房評估 - 50 -   4.1.5 分類屬性及法則探討 - 57 -  4.2 實證結果驗證與分析 - 58 -   4.2.1 評估實例驗證 - 58 -   4.2.2 維運模式說明與分析 - 61 -   4.2.3 電信機房電力資源規劃之維運模式 - 65 - 第五章 結論與未來展望 - 67 -  5.1 研究結論 - 67 -  5.2 研究貢獻 - 68 -  5.3 研究限制 - 69 -  5.4 未來研究建議 - 69 - 參考文獻 - 70 -

    [1] Al-Kandari, A. M., Soliman, S. A., & El-Hawary, M. E. (2004). Fuzzy short-term electric load forecasting. International Journal of Electrical Power & Energy Systems, 26(2), 111-122.
    [2] Angrisani L., & Daponte P. (2001). Wavelet Network-Based Detection and Classification of Transients. IEEE Transactions on Instrumentation and Measurement, 50(5), 1425-1435.
    [3] Batzias, F.A., & Siontorou, C. C. (2005). Investigating the causes of biosensor SNR decrease by means of fault tree analysis. IEEE Transactions on Instrumentation and Measurement, 54(4), 1395-1406.
    [4] Ben, D.A., & Chen, Z. (2006). Linguistic-Labels Aggregation and Consensus Measure for Autocratic Decision Making Using Group Recommendations. IEEE Transactions on Systems, Man and Cybernetics - Part A - Systems and Humans, 36(3), 558-568.
    [5] Charytoniuk, W., & Chen, M. S. (2000). Very Short-term Load Forecasting Using Artificial Neural Networks. IEEE Transactions on Power Systems, 15(1), 263-268.
    [6] Chiclana, F., Herrera, F., & Herrera-Viedma., E. (2001). Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations. Fuzzy Sets and Systems, 122(2), 277-291.
    [7] Chen, S. H., & Hwang, C. L. (1992). Fuzzy Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag Berlin Heidelberg.
    [8] Chen, W. H., Liu, C. W., & Tsai, M. S. (2000). On-Line Fault Diagnosis of Distribution Substations Using Hybrid Cause-Effect Network and Fuzzy Rule-Based Method. IEEE Transaction on Power Delivery, 15(2), 710-717.
    [9] Choong, F., Reaz, M. B. I., and Mohd-Yasin, F. (2005). Advances in signal processing and artificial intelligence technologies in the classification of power quality events: A survey. Electric Power Components and Systems, 33(12), 1333-1349.
    [10] Chung, I. Y., Won, D. J., Kim, J. M., Ahn, S. J., & Moon, S.I. (2007). Development of a network-based power quality diagnosis system. Electric Power Systems Research, 77(8), 1086-1094.
    [11] Delgado, M., & Herrera, F. (2002). A communication model based on 2-tuple fuzzy linguistic representation for a distributed intelligent agent system on Internet. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 6(5), 320-328.
    [12] Dong, W. M., & Wong, F. S. (1987). Fuzzy weighted average and implementation of the extension principle. Fuzzy Sets and Systems, 21(2), 183–199.
    [13] Dubois, D., and Prade, H. (1980). Fuzzy real algebra: some results. Fuzzy Sets and Systems, 2(1), 327-348.
    [14] Ericsson, G. N. (2002). Classification of Power Systems Communications Needs and Requirements: Experiences From Case Studies at Swedish National Grid. IEEE Transactions on Power Systems Delivery, 17(2), 345-347.
    [15] Ericsson. (2005). Enhancing Telecom Management, http://www.ericsson.com/
    products/white_papers_pdf/telecom_management.pdf, July.
    [16] Fan, Z. P., Ma, J., Jiang,Y. P., Sun, Y. H., & Ma, L. (2006). A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations. European Journal of Operational Research, 174(1), 311–321.
    [17] Gonzalez-Romera, E, Jaramillo-Moran, M. A., and Carmona-Fernandez, D. (2007). Forecasting of the electric energy demand trend and monthly fluctuation with neural networks. Computers & Industrial Engineering, 52(3), 336-343.
    [18] Herrera-Viedma, E., Herrera, F., Chiclana, F., & Luque, M.. (2004). Some Issues on Consistency of Fuzzy Preference Relations. European Journal of Operational Research, 154(1), 98-109.
    [19] Herrera-Viedma, E., Martínez, L., Mata, F., & Chiclana, F. (2005). A consensus support system model for group decision-making problems with multigranular linguistic preference relations, IEEE Transactions on Fuzzy Systems, 13(5), 644-658.
    [20] Hwang, C.L., & Yoon, K.P. (1995). Multiple Attribute Decision Making: Saga Publications.
    [21] Isiklar, G., & Buyukozkan, G. (2007). Using a multi-criteria decision making approach to evaluate mobile phone alternatives. Computer Standards & Interfaces, 29(2), 265-274.
    [22] Jamshidi, M., Vadiee, N., & Ross, T. J. (1993). Fuzzy Logic and Control. PTR Prentice-Hall, Inc.
    [23] Khademi, M. (1997). Reliability of telecommunications for bulk power system teleprotection. IEEE Transactions on Power Delivery, 12(2), 601-606.
    [24] Kuo, Y. F, & Chen, P. C. (2006). Selection of mobile value-added services for system operators using fuzzy synthetic evaluation. Expert Systems with Applications, 30(4), 612-620.
    [25] Lee, D. H., & Park, D. (1997). An efficient algorithm for fuzzy weighted average. Fuzzy Sets and Systems, 87(1), 39–45.
    [26] Lin, C., & Hsieh, P. J. (2004). A fuzzy decision support system for strategic portfolio management. Decision Support Systems, 38(3), 383-393.
    [27] Liou,T. S., & Wang, M. J. (1992). Fuzzy weighted average : An improved algorithm. Fuzzy Sets and Systems, 49(3), 307–315.
    [28] Lo, C. C., Wang, P., & Chao, K. M. (2006). A fuzzy group-preferences analysis method for new-product development. Expert Systems with Applications, 31(4), 826-834.
    [29] Mora-Florez, J., Barrera-Nunez, V., & Carrillo-Caicedo, G.. (2006). Fault location in power distribution systems using a learning algorithm for multivariable data analysis. IEEE Transactions on Power Delivery , 22(3), 1715-1721.
    [30] Murry, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.
    [31] Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press.
    [32] Opricovic, S., & Tzeng, G. H. (2003). Defuzzification within a multicriteria decision model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(5), 635 – 652.
    [33] Reiman, T., Oedewald, P., & Kettunen J. (2005). Maintenance culture and management of change - Intermediate report 2004. Electronic report.
    [34] Sfetsos, A., & Siriopoulos, C. (2005). Time series forecasting of averaged data with efficient use of information. IEEE Transactions on Systems, Man and Cybernetics - Part A - Systems and Humans, 35(5), 738-745.
    [35] Soliman, S. A., & Al-Kandari, A. M. (2006). Electric annual peak load forecasting based on fuzzy systems. Engineering Intelligent Systems for Electrical Engineering and communications, 14(3), 169-175.
    [36] Srinivasan, D., Cheu, R. L., Poh, Y. P., & Ng, A. K. C. (2000). Automated fault detection in power distribution networks using a hybrid fuzzy-genetic algorithm approach. Engineering Applications of Artificial Intelligence, 13(4), 407-418.
    [37] Tang, M. T. & Tzeng, G. H. (1999). A Hierarchy Fuzzy MCDM Method for Studying Electronic Marketing Strategies in the Information Service Industry. Journal of International Information Management, 8(1), 1-22.
    [38] Tamimi, M. & Egbert, R. (2000). Short Term Electric Load Forecasting via Fuzzy Neural collaboration. Electric Power Systems Research, 56(3), 243-248.
    [39] Wang, J., Ma, Z., & Li, L. (2005). Detection, mining and forecasting of impact load in power load forecasting. Applied Mathematics and Computation, 168(1), 29-39.
    [40] Wang, W. J. (1997). New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85(3), 305-309.
    [41] Yang, C., Fu, G. L., & Tzeng, G. H. (2005). Creating a Win-Win in the Telecommunications Industry: The Relationship between MVONs and MNOs in Taiwan. Canadian Journal of Administrative Sciences, 22(4), 316-328.
    [42] Yu, H. C., Lee, Z. Y., & Chang, S. C. (2005). Using a fuzzy multi-criteria decision making approach to evaluate alternative licensing mechanisms. Information & Management, 42(4), 517-531.
    [43] Zeleny, M. (1982). Multiple Criteria Decision Making. McGraw-Hill, New York.
    [44] 中華電信,(2005),客戶服務白皮書,http://www.cht.com.tw。
    [45] 中華電信企業電子商務網站,(2007),網路資料中心IDC – 設備代管 co-location,http://www.hib2b.com.tw/product/co-location.php。
    [46] 中華電信企業網站,(2005),ITU、DGT、CHT 行銷處,http://web.cht.com.tw。
    [47] 電信總局,(2002),電信自由化政策白皮書。
    [48] 電信總局,(2007),頻譜管理政策,http://www.dgt.gov.tw/chinese/Frequency-management/7.1/fm-policy.shtml。
    [49] 施順賢,(2003),模糊決策理論於通信機房電力系統決策模式之研究,國立高雄第一科技大學,碩士論文。

    下載圖示 校內:2010-12-26公開
    校外:2010-12-26公開
    QR CODE