| 研究生: |
陳泳廷 Chen, Yung-Ting |
|---|---|
| 論文名稱: |
和弦和音程誘發之聽覺腦電位:音樂家、精神分裂患者和一般健康者之腦半球反應差異比較 Hemispheric Differences in the Auditory Event-Related Potential Elicited by Chord and Interval Stimuli: A Comparison among Musicians, Patients with Schizophrenia and Normal Subjects |
| 指導教授: |
梁勝富
Liang, Sheng-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 聽覺事件相關電位 、精神分裂症 、大腦可塑性 、腦半球差異 |
| 外文關鍵詞: | Auditory event-related potential (AEP), Schizophrenia, Brain plasticity, Hemispheric differences |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
專業音樂家或特定腦區受損的病患近年來被視為是用於檢驗神經系統理論和發展評估疾病系統的對象。本研究的受測者分為三個族群:受過專業訓練的音樂家、接受治療中的精神分裂患者和一般正常健康者。在聽覺事件相關電位的實驗中,隨機撥放三種和弦刺激和兩種音程刺激。本研究中,除了藉由觀察腦部有經過聽覺特化的音樂家和一般正常人之間的比較來探討大腦可塑性的議題,也藉由觀察精神異常的病人和一般正常人之間的比較來探討精神分裂症對於聽覺腦區造成的缺損。
本研究從兩種角度來討論大腦可塑性。藉由大腦中線電極的ERP分析中觀察到音樂家相對於正常人表現出較強的P2活化,除此之外,藉由左右腦半球的側化分析,只有在正常人和精神分裂患者的腦波發現右腦的ERP能量會大於左腦的,此現象在音樂家身上並不顯著。另一方面,此研究也從兩種角度來討論精神分裂患者對於聽覺感知的缺陷。在事件相關電位實驗中,精神分裂症患者在 N1和P2的活化均較正常人來的弱,除此之外,也發現精神分裂患者相對於正常人的在N1表現出較弱的側化。
本研究提供了腦皮質處理音樂和諧性、音樂複雜性和左右腦半球反應差異的比較。除此之外,也提供了有關大腦可塑性以及精神分裂症的相關結果,相信對未來研究會有幫助。如果未來能結合腦電圖和功能性磁振造影(fMRI)的同步記錄,相信能夠獲得更精確的資訊來了解病患在大腦結構上缺損的情況或音樂家於大腦可塑性的變化。
Professional musician or individual who has neuropsychiatric disorders to specific brain regions has long been used to test theories or develop assessment system for illness. The Auditory event-related potentials (ERPs) experiments were recorded from 12 well-trained musicians, 12 medicated schizophrenic patients and 12 normal subjects (healthy controls). The stimuli was presented randomly by three kinds of chord stimuli (major, diminish and atonal) and two kinds of interval stimuli (perfect fifth and tritone). In this study, we used musicians whose brain are highly specialized in auditory, compared with healthy controls to find out the brain plasticity in musicians. On the other hand, we also used schizophrenic patients who are neuropsychiatric disordered, compared with healthy controls to find out the auditory processing deficits or temporal lobe dysfunction.
We used two concepts to make the discussion on brain plasticity issue. First, the ERP analysis of midline electrodes indicated that only musicians show enhanced P2 and hierarchy of P2 amplitude. Second, the analysis between left and right hemisphere indicated that hemispheric asymmetries (the ERPs amplitude was larger over the right compared with left hemisphere electrode sites) only occurred in healthy controls and patients with schizophrenia groups, but not occurred in musicians group. On the other hand, we also used two concepts to make the discussion on auditory processing deficits in schizophrenic patients. First, this paper indicated that the amplitude of N1 and P2 components evoked by chord or interval was reduced in schizophrenia patients compared with healthy controls and musicians. Second, our finding also found the reduced hemispheric asymmetry of N1 component in patients with schizophrenia compared with healthy controls.
In summary, this study provided some information about cortical processing of musical consonance, sound complexity and hemispheric differences among musicians, normal subject and patients with schizophrenia. The issues of brain plasticity and illness may be useful for helping further researching. In the future, simultaneous EEG recording and fMRI monitoring might able to obtain more precise information or further new insights of the brain structural deficit in patients or enhancement in musicians.
Alexander, J. E., Bauer, L. O., Kuperman, S., Morzorati, S., O'Connor, S. J., Rohrbaugh, J., et al., “Hemispheric differences for P300 amplitude from an auditory oddball task,” International Journal of Psychophysiology, vol. 21, pp. 189-196, 1996.
Andreasen, N. C., “Symptoms, signs, and diagnosis of schizophrenia,” The Lancet, vol. 346, pp. 477-481, 1995.
Atienza, M., Cantero, J. L., & Dominguez-Marin, E., “The time course of neural changes underlying auditory perceptual learning,” Learning & Memory, vol. 9, p. 138, 2002.
Basile, L. F. H., Yacubian, J., de Castro, C. C., & Gattaz, W. F., “Widespread electrical cortical dysfunction in schizophrenia,” Schizophrenia Research, vol. 69, pp. 255-266, 2004.
Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B., “Voice-selective areas in human auditory cortex,” Nature, vol. 403, pp. 309-312, 2000.
Bigand, E., Parncutt, R., & Lerdahl, F., “Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training,” Attention, Perception, & Psychophysics, vol. 58, pp. 125-141, 1996.
Boutros, N. N., Korzyuko, O., Oliwa, G., Feingold, A., Campbell, D., McClain-Furmanski, D., et al., “Morphological and latency abnormalities of the mid-latency auditory evoked responses in schizophrenia: a preliminary report,” Schizophrenia Research, vol. 70, pp. 303-313, 2004.
Brancucci, A., Babiloni, C., Rossini, P. M., & Romani, G. L., “Right hemisphere specialization for intensity discrimination of musical and speech sounds,” Neuropsychologia, vol. 43, pp. 1916-1923, 2005.
Brancucci, A., Lucci, G., Mazzatenta, A., & Tommasi, L., “Asymmetries of the human social brain in the visual, auditory and chemical modalities,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, p. 895, 2009.
Brancucci, A., & San Martini, P., “Laterality in the perception of temporal cues of musical timbre,” Neuropsychologia, vol. 37, pp. 1445-1451, 1999.
Broca, P., “Remarques sur la sie`ge de la faculte´ du langagearticule´, suivies d'une observation d'aphe´mie,” Bulletin de la Socie´te´ anatomique de Paris, vol. 36, pp. 330-356, 1861.
Clunas, N. J., & Ward, P. B., “Auditory recovery cycle dysfunction in schizophrenia: A study using event-related potentials,” Psychiatry Research, vol. 136, pp. 17-25, 2005.
Crow, T. J., Ball, J., Bloom, S. R., & Brown, R., “Schizophrenia as an anomaly of development of cerebral asymmetry: A postmortem study and a proposal concerning the genetic basis of the disease,” Archives of General Psychiatry, 1989.
Davis, H., Mast, T., Yoshie, N., & Zerlin, S., “The slow response of the human cortex to auditory stimuli: recovery process,” Electroencephalography and Clinical Neurophysiology, vol. 21, pp. 105-113, 1966.
Demonet, J., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. L., Wise, R., et al., “The anatomy of phonological and semantic processing in normal subjects,” Brain, vol. 115, p. 1753, 1992.
Foss, A. H., Altschuler, E. L., & James, K. H., “Neural correlates of the Pythagorean ratio rules,” NeuroReport, vol. 18, p. 1521, 2007.
Garcia-Larrea, L., Lukaszewicz, A. C., & Mauguiere, F., “Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects,” Neuropsychologia, vol. 30, pp. 723-741, 1992.
Gerloff, C., Corwell, B., Chen, R., Hallett, M., & Cohen, L. G., “Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences,” Brain, vol. 120, p. 1587, 1997.
Geschwind, N., “Specializations of the human brain,” Scientific American, 1979.
Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W., “Electrical signs of selective attention in the human brain,” Science, vol. 182, p. 177, 1973.
Holinger, D. P., Faux, S. F., Shenton, M. E., Sokol, N. S., Seidman, L. J., Green, A. I., et al., “Reversed temporal region asymmetries of P300 topography in left-and right-handed schizophrenic subjects,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 84, pp. 532-537, 1992.
Hugdahl, K., Bronnick, K., Kyllingsbrk, S., Law, I., Gade, A., & Paulson, O. B., “Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET studyfn2,” Neuropsychologia, vol. 37, pp. 431-440, 1999.
Itoh, K., Suwazono, S., & Nakada, T., “Cortical processing of musical consonance: an evoked potential study,” NeuroReport, vol. 14, p. 2303, 2003.
Jablensky, A., “Schizophrenia: recent epidemiologic issues,” Epidemiologic Reviews, vol. 17, p. 10, 1995.
Javitt, D. C., Shelley, A. M., & Ritter, W., “Associated deficits in mismatch negativity generation and tone matching in schizophrenia,” Clinical Neurophysiology, vol. 111, pp. 1733-1737, 2000.
Karniski, W., & Clifford Blair, R., “Topographical and temporal stability of the P300,” Electroencephalography and Clinical Neurophysiology, vol. 72, pp. 373-383, 1989.
Kay, S. R., Flszbein, A., & Opfer, L. A., “The positive and negative syndrome scale (PANSS) for schizophrenia,” Schizophrenia Bulletin, vol. 13, p. 261, 1987.
Keidel, W., & Spreng, M., “Neurophysiological evidence for the Stevens power function in man,” Journal of the Acoustical Society of America, 1965.
Kennedy, M., & Bourne, J., The Oxford dictionary of music: Oxford University Press, USA, 1994.
Kimura, D., “Left-right differences in the perception of melodies,” The Quarterly Journal of Experimental Psychology, vol. 16, pp. 355-358, 1964.
Klapuri, A., & Davy, M., Signal processing methods for music transcription: Springer-Verlag New York Inc, 2006.
Koelsch, S., Schroger, E., & Tervaniemi, M., “Superior pre-attentive auditory processing in musicians,” NeuroReport, vol. 10, p. 1309, 1999.
Koelsch, S., & Siebel, W. A., “Towards a neural basis of music perception,” Trends in Cognitive Sciences, vol. 9, pp. 578-584, 2005.
Nash, A. J., & Williams, C. S., “Effects of preparatory set and task demands on auditory event-related potentials,” Biological Psychology, vol. 15, pp. 15-31, 1982.
Naumann, E., Huber, C., Maier, S., Plihal, W., Wustmans, A., Diedrich, O., et al., “The scalp topography of P300 in the visual and auditory modalities: a comparison of three normalization methods and the control of statistical type II error,” Electroencephalography and Clinical Neurophysiology, vol. 83, pp. 254-264, 1992.
Neukirch, M., Hegerl, U., Kotitz, R., Dorn, H., Gallinat, U., & Herrmann, W., “Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components,” Neuropsychobiology, vol. 45, pp. 41-48, 2000.
O'Donnell, B. F., Hokama, H., McCarley, R. W., Smith, R. S., Salisbury, D. F., Mondrow, E., et al., “Auditory ERPs to non-target stimuli in schizophrenia: relationship to probability, task-demands, and target ERPs* 1,” International Journal of Psychophysiology, vol. 17, pp. 219-231, 1994.
Oertel-Knochel, V., & Linden, D. E. J., “Cerebral Asymmetry in Schizophrenia,” The Neuroscientist, 2011.
Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., et al., “Functional anatomy of musical perception in musicians,” Cerebral Cortex, vol. 11, p. 754, 2001.
Pallesen, K. J., Brattico, E., Bailey, C., Korvenoja, A., Koivisto, J., Gjedde, A., et al., “Emotion processing of major, minor, and dissonant chords,” Annals of the New York Academy of Sciences, vol. 1060, pp. 450-453, 2005.
Patterson, R. D., Gaudrain, E., & Walters, T. C., “The Perception of Family and Register in Musical Tones,” Music Perception, pp. 13-50, 2010.
Peretz, I., & Morais, J., “Determinants of laterality for music: Towards an information processing account,” 1988.
Perrault, N., & Picton, T. W., “Event-related potentials recorded from the scalp and nasopharynx. I. N1 and P2,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 59, pp. 177-194, 1984.
Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K., “A voice region in the monkey brain,” Nature Neuroscience, vol. 11, pp. 367-374, 2008.
Plack, C. J., Oxenham, A. J., & Fay, R. R., Pitch: neural coding and perception vol. 24: Springer Verlag, 2005.
Poremba, A., “Auditory processing and hemispheric specialization in non-human primates,” Cortex, vol. 42, pp. 87-89, 2006.
Price, C. J., “The anatomy of language: contributions from functional neuroimaging,” Journal of Anatomy, vol. 197, pp. 335-359, 2000.
Pritchard, W. S., Shappell, S. A., & Brandt, M. E., “Psychophysiology of N200/N400: A review and classification scheme,” Advances in Psychophysiology, vol. 4, p. 43¡V106, 1991.
Randel, D. M., The Harvard dictionary of music: Belknap Press, 2003.
Ritter, W., Simson, R., Vaughan, H. G., & Friedman, D., “A brain event related to the making of a sensory discrimination,” Science, vol. 203, p. 1358, 1979.
Rosburg, T., Boutros, N. N., & Ford, J. M., “Reduced auditory evoked potential component N100 in schizophrenia--a critical review,” Psychiatry Research, vol. 161, pp. 259-274, 2008.
Rossi, S., Cappa, S. F., Babiloni, C., Pasqualetti, P., Miniussi, C., Carducci, F., et al., “Prefontal cortex in long-term memory: an" interference" approach using magnetic stimulation,” Nature Neuroscience, vol. 4, pp. 948-952, 2001.
Roth, W. T., Goodale, J., & Pfefferbaum, A., “Auditory event-related potentials and electrodermal activity in medicated and unmedicated schizophrenics* 1,” Biological Psychiatry, vol. 29, pp. 585-599, 1991.
Sartorius, N., Jablensky, A., Korten, A., Ernberg, G., Anker, M., Cooper, J., et al., “Early manifestations and first-contact incidence of schizophrenia in different cultures: a preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders,” Psychological Medicine, vol. 16, pp. 909-928, 1986.
Schellenberg, E. G., & Trehub, S. E., “Frequency ratios and the perception of tone patterns,” Psychonomic Bulletin & Review, vol. 1, pp. 191-201, 1994.
Schon, D., & Besson, M., “Processing pitch and duration in music reading: a RT-ERP study,” Neuropsychologia, vol. 40, pp. 868-878, 2002.
Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E., “Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians,” The Journal of Neuroscience, vol. 23, p. 5545, 2003.
Shelley, A. M., Silipo, G., & Javitt, D. C., “Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction,” Schizophrenia Research, vol. 37, pp. 65-79, 1999.
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schroger, E., “Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study,” Experimental Brain Research, vol. 161, pp. 1-10, 2005.
Thompson, M., & Thompson, L., “The neurofeedback book,” Whear Ridge, Colorado USA: The Association for Applied Psychophysiology and Biofeedback, vol. 23, p. 386, 2003.
Todd, J., Michie, P. T., Budd, T. W., Rock, D., & Jablensky, A. V., “Auditory sensory memory in schizophrenia: inadequate trace formation?,” Psychiatry Research, vol. 96, pp. 99-115, 2000.
Tramo, M. J., Shah, G. D., & Braida, L. D., “Functional role of auditory cortex in frequency processing and pitch perception,” Journal of Neurophysiology, vol. 87, p. 122, 2002.
von Kriegstein, K., Eger, E., Kleinschmidt, A., & Giraud, A. L., “Modulation of neural responses to speech by directing attention to voices or verbal content,” Cognitive Brain Research, vol. 17, pp. 48-55, 2003.
WeiHong, C., “Perceptive Processing of Musical Consonance and Sound Complexity among Musicians, Non-musicians and Patients with Schizophrenia: An Event-related Potential and Behavioral Study,” National Cheng Kung University Institute of Computer Science and Information Engineering, 2010.
Woods, D. L., Knight, R., & Scabini, D., “Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions,” Cognitive Brain Research, vol. 1, pp. 227-240, 1993.
Zatorre, R. J., Evans, A. C., Meyer, E., & Gjedde, A., “Lateralization of phonetic and pitch discrimination in speech processing,” Science, vol. 256, p. 846, 1992.
Zatorre, R. J., & Samson, S., “Role of the right temporal neocortex in retention of pitch in auditory short-term memory,” Brain, vol. 114, p. 2403, 1991.