| 研究生: |
陳永祥 Chen, Yung-Shiang |
|---|---|
| 論文名稱: |
聚合酶連鎖反應晶片設計及溫度控制分析 The Analysis of Polymerase Chain Reaction Chip Design and Temperature Control |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 模糊控制 、聚合酶連鎖反應晶片 、ANSYS 、穩態溫度特性 、均溫層 、脈寬調變 、動態溫度反應 、田口方法 |
| 外文關鍵詞: | temperature spreader, pulse width modulation, Polymerase Chain Reaction Chip, transient temperature response, Taguchi method, fuzzy control, steady temperature distribution, ANSYS |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用ANSYS6.0有限元素分析軟體,模擬聚合酶連鎖反應晶片之穩態溫度特性及經模糊控制之動態溫度反應。
在穩能分析方面,首先分析微熱電阻絲之等效電阻率,並以實際之聚合酶連鎖反應晶片進行模型之驗證,結果相當吻合。其次,分析DNA樣本在聚合酶連鎖反應晶片中不同反應溫度均溫的情形,並加入一均溫層結構,減少DNA樣本之高低溫度差異,並提高DNA樣本有效體積百分比。
動態分析方面,首先分析不同均溫層結構對聚合酶連鎖反應晶片動態溫度響應之影響,藉由時間常數來判定動態升溫反應及到達不同反應溫度所需時間。其次,輸入功率採脈寬調變方式,並分析不同週期、佔空比及功率對動態溫度反應之影響。
最後,以田口方法針對溫度超量及安定時間兩個目標函數進行最佳化設計,將最佳化參數套用在模糊控制之歸屬函數中,且將控制邏輯導入聚合酶連鎖反應晶片之數值模型中。經分析結果得知,藉由模糊控制邏輯能效地控制聚合酶連鎖反應晶片之溫度循環。
This thesis is using the ANSYS6.0 software to analyze the steady temperature distribution and transient temperature response by fuzzy control on polymerase chain reaction chip (PCR chip).
In steady analysis, we numerically estimate the equivalent resistance that is the material property in a micro-resistor-heater. Then we verify the numerical result by comparing it with the experimental result of a prototype PCR chip, and come up a conclusion that two results are very similar. In addition, we add a temperature spreader to reduce temperature difference of the DNA sample. Sequentially, the appropriate volume rate in the DNA sample is improved.
In transient analysis, we analyze the effect of different temperature spreaders on transient temperature response for PCR chip. We apply time constant to investigate the temperature response and the required time for reaching different reaction temperatures. In this study, the pulse width modulation (PWM) is introduced to be a variable loading, and the effects of important factors, such as period, duty cycle and power, on transient temperature response are analyzed.
Taguchi method is also used to minimize the temperature overshoot and settling time. Then we apply the optical factors in fuzzy logic and combine it with the numerical model of PCR chip. Finally, we reach a conclusion that the temperature cycle of PCR chip can be controlled effectively by the fussy logic.
[1] R. K. Saiki, S. Scharf, F. Faloonam K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arnbeim, “Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia”, Science, Vol.230, 1985, pp.1350-1354.
[2] M.A. Northrup, C. Gonzalez, D. Hadley, R.F. Hills,P. Landre, S. Lehew, R. Saiki, J.J. Sninsky, R. Watson, andR. Watson, Jr., “EMS-based miniature DNA analysissystem,”The 8th international Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 1995, pp.764-767.
[3] Martin U. Kopp, Andrew J. de Mello, Andreas Manz, “Chemical Amplification: Continuous-Flow PCR on a Chip”, Science Vol. 280, May 1998, pp. 1046-1048
[4] Y. C. Lin, C. C. Yang, M. Y. Hung, ”Simulation and experimental validation of micro PCR chip”, Sens. Actuators B Vol. 71, 2000, pp. 127-133,
[5] D. Briand, M.-A. Gr.tillat, B. van der Schoot and N.F. de Rooij, “Thermal Management of Micro-Hotplates using MEMCAD as Simulation Tool”, Modeling and Simulation of Microsystems ,U.S. Grant hotel, San Diego, March 27-29 2000
[6] Chia-Yen Lee, Gwo-Bin Lee, Heng-Hui Liu, Fu-Chun Huang, “ MEMS-based Temperature Control Systems for PCR Applications,” Special issue, The International Journal of Non-linear Sciences and Numerical Simulations, 3 (3-4): 177-180, 2002. (SCI-E) (Corresponding author)
[7] R. K. Saiki, S. Scharf, F. Faloonam K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arnbeim, “Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia”, Science, Vol.230, 1985, pp.1350-1354.
[8] M. A. Shoffner, J. Cheng, G. E. Hvichia, L. J. Kricka and P. Wilding, ”Chip PCR.Ⅰ. Surface Passivation of Microfabricated Silicon-Glass Chip for PCR”, Nucleic Acids Research, Vol.24, No.2, 1996, pp.375-379.
[9] Gwo-Bin Lee, Che-Hsin Lin, Chia-Yen Lee, Fu-Chun Huang,“Microfluidic Chips for DNA Replication, Electrophoresis Separation and On-line Optical Detection,” proceedings of IEEE MEMS 2003, Kyoto, Japan, Jan. 19~ 23, 2003.
[10] Raymond A. Serway, ”Principles of Physics”, International Edition, Saunders College Pub, USA, 1994.
[11] ANSYS Menu, “Thermal-Electric Element”, Ch11. Table of Contents Theory Reference 5.7, March 2001.
[12] Frank P. Incropera, David P. DeWitt, “Fundamentals of Heat and Mass Transfer”, 4th Edition, John Wiley & Sons, New York, 1996
[13] Frank Kreith, Mark S. Bohn, “Principles of Heat Transfer”, 5th Edition, West Publishing Company, 1993
[14] 模楜邏輯與類神經模糊實例說明,Constantin von Altrock 原著,秉昱科技編譯,儒林圖書有限公司,民國85年,台北市
[15] 模糊控制理論與技術,楊英魁、孩宗瀛、鄭魁香、林建德、蔣旭堂編著,全華科技圖書股份有限公司,民國85年,台北市
[16] 類神經網路及模糊控制理論入明,王進德、蕭大全編著,全華科技圖書股份有限公司,民國83年,台北市
[17] 品質評價的SN比,小西省三,田口品質工程組譯,中國生產力中心,民國80年,台北市
[18] 田口方法品質設計的原理與實務,李輝煌,高立圖書有限公司,民國89年,台北市
[19] 品質設計的實驗計畫法,橫山巽子,田口品質工程組譯,中國生產力中心,民國80年,台北市
[20] ANSYS V6.0 Help system