| 研究生: |
葉景富 Yeh, Jin-Fu |
|---|---|
| 論文名稱: |
24-GHz CMOS射頻前端晶片及毫米波電路之研究設計 Research on 24-GHz RF Front-End CMOS RFICs and Millimeter-Wave Circuit Design |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 混頻器 、低雜訊放大器 、24-GHz |
| 外文關鍵詞: | 24-GHz, Mixer, Low-noise amplifier |
| 相關次數: | 點閱:79 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對24-GHz微波CMOS射頻前端RFICs及毫米波電路之研究設計,晶片製作使用國家晶片中心提供的標準TSMC CMOS 0.18 μm以及TSMC RF CMOS 0.13 μm製程,內容分為兩個部份:第一部分介紹毫米波汽車防撞雷達與毫米波的研究背景,第二部份為毫米波CMOS RFICs之設計與量測。
首先介紹K頻帶汽車防撞雷達射頻前端收發機系統規劃,針對包括靈敏度、SNR、解析度、等進行討論,並針對所規劃高解析汽車防撞雷達進行鏈路預算,希望對射頻系統規劃者與電路設計者有參考作用。毫米波CMOS RFICs設計方面,24-GHz單端輸入差動輸出(single-in differential-out, SIDO) CMOS低雜訊放大器採用trifilar變壓器提供良好的平衡器特性、級間匹配以及簡化偏壓電路設計等好處。量測結果在24-GHz有14 dB的差動增益、雜訊指數為4.3 dB、1-dB增益壓縮點輸入功率為-10.7 dBm以及0.6 dB與0.47°的增益誤差與相位誤差,整體消耗功率為20.2 mW。混頻器採用雙閘極架構之雙平衡式雙閘極混頻器,在限定功率消耗的考量下選擇電晶體尺寸達成低功率設計,並且對電晶體之Cgs、Cgd、Gm、Rds及NFmin等小訊號參數對於不同偏壓變化情形決定偏壓點的。電路佈局之傳輸走線均使用Sonnet考量金屬的寄生與電磁耦合效應,由Agilent ADS進行共同模擬,務必要求佈局與模擬一致。量測結果在RF端於24 GHz的輸入返回損耗部分為12 dB,LO端於24 GHz的輸入返回損耗部分為16dB,以及IF端輸出主動平衡器的輸入返回損耗量測結果為12 dB。
This thesis presents the research on 24-GHz CMOS RFICs and millimeter-wave circuit design for short-range vehicular collision-avoidance radar application. The RFICs are fabricated with TSMC 0.18 μm 1P6M standard and TSMC RF CMOS 0.13μm process. Agilent ADS is used to integrate the co-simulation design. A 24-GHz single-in differential-out (SIDO) CMOS low-noise amplifier (LNA) integrated a trifilar transformer is designed. The trifilar transformer in the SIDO LNA can achieve a good balanced characteristics, inter-stage matching and reduction of the bias-circuits. The designed 24-GHz double-balance dual-gate CMOS mixer uses a multi-bias technique to enhance the linearity.
[1] M. Schulze, “Workshop Vehicle Safety Communication,”May, 5, 2005
[2] http://www.car-safety.org.tw
[3] David K. Barton,Modern Radar System Analysis, Harvard, Massachusetts, Apr. 1998.
[4] “Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,” FCC,Washington, DC, ET Docket 98-153, Feb 14. 2002.
[5] A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A Hajimiri, “A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon,”ISSCC, Paper 10.1, Feb. 2006.
[6] A. Natarajan, A. Komijani, X. Guan, A. Babakhani, Y. Wang, and A. Hajimiri, “A 77GHz Phased-Array Transmitter with Local LO-Path Phase-Shifting in Silicon,”ISSCC, Paper 10.2, Feb. 2006.
[7] G. M. Brooker, "Understanding millimetre wave FMCW radars," ICST, pp. 152-157, Nov. 2005.
[8] 陳逸軒,應用於24-GHz FMCW汽車雷達與60-GHz WPAN CMOS壓控振盪器之研製,國立成功大學電腦與通訊工程研究所碩士論文,民國九十七年。
[9] G. M. Brooker, "Understanding millimetre wave FMCW radars," ICST, pp. 152-157, Nov. 2005.
[10] Delphi Corporation, “Consultation paper on the introduction of wireless systems using ultra-wideband technology,” Industry Canada, May 2005.
[11] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005.
[12] 郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國立成功大學電腦與通訊工程研究所碩士論文,民國九十七年。
[13] B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev., vol. 32, pp. 97–109, Jul. 1928.
[14] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev., vol. 32, pp. 110–113, Jul. 1928.
[15] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[16] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 2004.
[17] R. P. Jindal, “Compact noise models for MOSFETs,” IEEE Trans. Electron Devices, vol. 53, pp. 2051–2061, S P. Haldi, D. Chowdhury, G. Liu, and A. M. Niknejad, “A 5.8 GHz linear power amplifier in a standard 90nm cmos process using a 1V power supply,” in Proc. IEEE Radio Frequency Integrated Circuits Symposium, pp. 431–434, June 2007.ep. 2006.
[18] 朱元凱,應用於802.11a WLAN之5 GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電機工程學系碩士論文,民國九十一年。
[19] Derek K. Shaeffer and Thomas H. Lee, “A 1.5-V 1.5-GHz CMOS Low-Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[20] I. Aoki et al, “Distributed Active Transformer – A New Power- Combining and Impedance-Transformation Technique”, IEEE Trans. on MTT, vol. 50, Jan. 2002, pp. 316–331.
[21] Ichiro Aoki, Scott D. Kee, David B. Rutledge, Ali Hajimiri, "Fully Integrated CMOS Power Amplifier Design Using the Distributed Active-Transformer Architecture," IEEE Journal of Solid-state Circuits, Vol. 37, No. 3, Mar. 2002.
[22] P. Haldi, D. Chowdhury, G. Liu, and A. M. Niknejad, “A 5.8 GHz linear power amplifier in a standard 90nm cmos process using a 1V power supply,” in Proc. IEEE Radio Frequency Integrated Circuits Symposium, pp. 431–434, June 2007.
[23] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[24] O. El-Gharniti, E. Kerherve, J. -B. Begueret and P. Jarry, “Modeling of integrated monolithic transformers for silicon RF IC,” IEEE ICECS, pp. 137-140, Dec. 2004.
[25] K. T. Ng, B. Rejaei amd J. N. Burghartz, “Substrate effects in monolithic RF transformers on silicon,” IEEE Trans. Microw. Theory Tech., vol.50, no. 1, pp. 377-383, Jan. 2002.
[26] 賴季霆,使用變壓器架構之3-5-GHz超寬頻接收機CMOS 射頻晶片的設計研究,國立成功大學電腦與通訊工程研究所碩士論文,民國九十六年。
[27] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005.
[28] S. P. Voinigescu, T. O. Dickson, R. Beerkens, I. Khalid, and P. Westergaard, “A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 111–114, Sep. 2004.
[29] H. O. Vickes, M. Ferndahl, A. Masud and H. Zirath, “The influence of the gate leakage current and the gate resistance on the noise and gain performances of 90-nm CMOS for micro- and millimeter-wave frequencies,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 971–974, Jun. 2004.
[30] J. A. Jr., K. T. Kornegay, D. Dawn, S. Pinel, J.Laskar, “60-GHz LNA using a hybrid transmission line and conductive path to ground technique insilicon,” in IEEE RFIC Symp. Dig., pp. 685–688, Jun. 2007.
[31] X. Guo et al., “A power efficient differential 20-GHz low noise amplifier with 5.3-GHz 3-dB bandwidth,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 9, pp. 603-605, Sep. 2005.
[32] B. Welch et al., “A 20-GHz low-noise amplifier with active balun in a 0.25-μm SiGe BICMOS technology” IEEE J. Solid-State Circuits, vol. 40, no.10, pp. 2092–2097, Oct. 2005.
[33] S. A. Maas, Microwave Mixers, 2nd edition, Boston: Artech House, 1993.
[34] C. S. Lin, P. S. Wu, H. Y. Chang and H. Wang, “A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293 – 295, May 2006.
[35] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer,” in IEEE RFIC Symp. Dig., pp. 163–166, Jun. 2005.
[36] C. Tsironis, R. Meierer, and R. Stahlmann, “Dual-gate MESFET mixers,” IEEE Trans. Microw. Theory and Tech., vol. MTT-32, no. 3, pp. 248–255, Mar. 1984.
[37] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25–27, Jan. 2006.
[38] S. A. Maas, “A GaAs MESFET mixer with very low intermodulation,” IEEE Trans. Microw. Theory and Tech., vol. MTT-35, no. 4, pp. 425–429, Apr. 1987.
[39] Hung-Ju Wei,Chinchun Meng, Po-Yi Wu, and Kuan-Chang Tsung, “K-band CMOS sub-harmonic resistive mixer with a miniature Marchand balun on lossy ssilicon substrate,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 40–42, Jan. 2008.
[40] Frank Ellinger, Lucio Carlo Rodoni, Gion Sialm, Christian Kromer, George von Bren, Martin L. Schmatz, Christian Menolfi, Thomas Toifl, Thomas Morf, Marcel Kossel, and Heinz Jckel, “30–40-GHz Drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology, vol.52, no.5, pp. 248–255, May. 2004.
[41] S. A. Maas, Microwave Mixers, 2nd edition, Boston: Artech House, 1993.
[42] C. Tsironis, R. Meierer, and R. Stahlmann, “Dual-gate MESFET mixers,” IEEE Trans. Microw. Theory and Tech., vol. MTT-32, no. 3, pp. 248–255, Mar. 1984.
[43] C. Tsironis, R. Meierer, and R. Stahlmann, “Dual-gate MESFET mixers,” IEEE Trans. Microw. Theory and Tech., vol. MTT-32, no. 3, pp. 248–255, Mar. 1984.
[44] R. A. Pucel, D. Masse, and R. Bera, “Performance of GaAs MESFET mixers at x-band,” IEEE Trans. Microw. Theory Tech., vol. MTT-24, pp. 351–360, June 1976.
[45] K. Kanazawa, M. Kazumura, S. Nambu, G. Kano, and I. Teramoto, “A GaAs double-balanced dual-gate FET mixer IC for UHF receiver front-end applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, pp. 1548–1554, Dec. 1985.
[46] Chung-Fai Au-Yeung, and Kwok-Keung M. Cheng, “IMD reduction in CMOS double-balanced mixer using multibias dual-gate transistors,” IEEE Trans. Microw. Theory and Tech., vol. 54, no. 1, pp. 4–9, Jan. 2006.
[47] Kwok-Keung M. Cheng, and Chung-Fai Au-Yeung, “Novel difference-frequency dual-signal injection method for CMOS mixer linearization,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 25–27, July. 2004.
[48] R. C. H. Li, Key Issues in RF/RFIC Circuit Design, 2005.
[49] S. -H. Lee, H. -C. Bae, S. -Y. Lee, J. Kim, B. -W. Kim, and J. -Y. Kang, “A 1-6 GHz monolithic up-conversion mixer with input/output active baluns using SiGe HBT process,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems Meeting Dig., pp. 17-20, Sept. 2004.
[50] 鐘豪文,超寬頻 UWB 無線射頻收發機之寬頻 CMOS RFICs 的設計研究,國立成功大學電腦與通訊工程研究所碩士論文,民國九十五年。