簡易檢索 / 詳目顯示

研究生: 劉維鈞
Liu, Wei-Chun
論文名稱: 偏振掃描橢偏儀之振幅調變 應用於圓二色性與圓雙折射研究
Study on Circular Dichroism and Circular Birefringence with Amplitude Modulation Based on Polarization Scanning Ellipsometry
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 73
中文關鍵詞: 史托克-穆勒偏光儀偏振掃描圓二色性圓雙折射振幅調變
外文關鍵詞: Stokes-Mueller polarimetry, Circular dichroism, Circular birefringence, Polarization scanning ellipsometry, Amplitude modulation
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一種穿透式測量葡萄糖光學性質之方式。大部分糖尿病患者需要長時間測量血糖濃度,而長期使用侵入式的方式不但飽受痛苦還容易造成感染或過度破壞皮膚組織,研發一套非侵入式血糖量測系統能是病患降低測量時的痛苦、並輕鬆的監測病情。利用光旋性物質溶於水時改變了溶液的折射率使其濃度與光學參數上存在著物理性質。
    在本研究中將藉由史托克-穆勒偏光儀校正系統並由光學感測器接收光強,並解出圓性雙折射(CB) 及去偏極化 (Dep)之穆勒矩陣。此系統是將每種不同樣本以對應最少的入射光來取得其光學參數來計算濃度。本實驗經由電光調變器(Electro-optic modulators)來取代原本的光學元件,能有效減少調整時所造成的誤差,並藉由光學斬光器和鎖相放大器來減少光源不穩定的誤差,達到振幅調變的效果。在葡萄糖的測量上,商業的史托克儀就能達到100mg/dl的靈敏度,此系統更讓靈敏度達到40mg/dl。並由此系統量測圓二色性 (CD) 及去偏極化 (Dep) 之穆勒矩陣,而使用擁有圓二色性的葉綠素來測試,也能發現此系統對在有色溶液中的靈敏度高於無色的溶液。

    A new transmitted optical system of the glucose measurement based upon polarization scanning ellipsometry with amplitude modulation is proposed. Most diabetic patients always need to measure blood glucose concentration. However, long-term measurement by using of invasive monitoring not only suffer pain but also cause infection or excessive destruction of skin tissue. Developing a non-invasive blood glucose measurement system can reduce pain and monitor the disease easily by a physical correlation that may exist between the optical coefficient and concentration of optical activity substance.
    In this study, calculating the Mueller matrix of the circular birefringence (CB) plus depolarization (Dep) and circular dichroism (CD) plus depolarization (Dep) by the intensity of photodetector is developed. We calculate the optical parameters by transmitting a minimum amount of incident light for the different concentration of sample in the system. Amplitude modulation is able to effectively increase the stability and sensitivity of the extracted intensity by the optical chopper in the polarization scanning ellipsometry. Thus, the total Mueller matrix of a sample can be extracted correctly and as a result, the parameters in CB, CD, and Dep are successfully obtained.

    Abstract ii 中文摘要 iv 誌謝 vi Table of Contents vii List of Figures x Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of the Glucose Monitoring 4 1.3 Review of the Standard Ellipsometry 8 1.4 Review of Mueller Matrix Method in Ellipsometry 11 1.5 Review of Glucose Sensing Using Optical Polarimetry and Stokes Mueller Polarimetry 13 1.6 Overview of Chapters 14 Chapter 2 Theoretical Analysis of Mueller Matrices 15 2.1 Principle of ellipsometry measurement 15 2.2 Stokes-Mueller Representation 18 2.3 Circular Birefringence Material and Model 21 2.3.1 Circular Birefringence (CB) Material 21 2.4 Depolarization Effect and its Mueller Matrix 25 2.5 Circular Dichroism Material and its Mueller Matrix 26 Chapter 3 New Dynamic Mueller Ellipsometry in Measuring Glucose Solution 29 3.1 New Dynamic Polarization Scanning Ellipsometry 29 3.2 Linear polarization scanner 31 3.3 Experiment of the linear polarization scanner 34 3.4 The Differential Mueller Matrix 40 3.5 Experimental Setup and Result of Glucose Extraction by polarization scanning ellipsometry System 42 3.5.1 Tissue phaton 42 3.5.2 Experimental Results of Glucose Extraction 43 Chapter 4 Intensity Modulation in Extracting CB and Dep 45 4.1 Mueller matrix decomposition method 45 4.1.2 CB sample 47 4.2 Analysis in Characterization of an Intensity Modulation 48 4.3 Experimental Setup and Results in the CB Sample 50 4.4 CB/Dep composite sample 54 4.5 Experimental Setup and Results in Extracing CB and Dep 56 Chapter 5 Intensity Modulation in Extracting CD and Dep 60 5.1 CD/Dep composite sample 60 5.2 Experimental Setup and Results in Extracting CD and Dep 63 5.2.1 Chlorophyll sample 63 5.2.2 Experimental setup and results in extracting CD and Dep 63 Chapter 6 Conclusions and Future Work 67 6.1 Conclusions 67 6.2 Future Work 68 Bibliography 69

    Alali, S. and Vitkin, I. A., “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanically moving parts,” Optical Engineering, Vol.52, Issue 10, pp. 103114-1-103114-8, (2013).

    Bagheri, Z., Massudi, R., Ghanavi, J., and Latifi, H. “Fluorescence spectroscopy for noninvasive glucose measurement,” Biomedical Optics-Vol.8798, pp. 87980K-1- 87980K-4, (2015).

    Cameron, B. D. and Li, Y., “Polarization-Based Diffuse Reflectance Imaging for Noninvasive Measurement of Glucose,” Journal of Diabetes Science and Technology, Vol.1, Issue 6, pp. 873-878, (2007).

    Chipman, R. A., “Depolarization index and the average degree of Polarization,” APPLIED OPTICS, Vol.44, Issue 13, pp. 2490-2495, (2015).

    Cote, G. L., Fox, M. D., and Northrop, R. B., “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” Biomedical Engineering, IEEE Transactions on, Vol. 39, Issue 7, pp. 752-756, (1992).

    Coˆ te, D. and Vitkin, I. A., “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” Journal of Biomedical Optics, Vol.9, Issue 1, pp. 213-220, (2004).

    Drude, P., “Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle,” Annals of Physics, Vol. 268, pp. 584-625, (1887).

    Fujiwara, H., Spectroscopic ellipsometry principle and application, John
    Wiley & Sons Ltd., England, (2007).

    Gribble, A., Layden, D., and Vitkin, I. A., “Experimental validation of optimum input polarization states for Mueller matrix determination with a dual photoelastic modulator polarimeter,” Optics Letters , Vol.38, Issue 24, pp. 5272-5275, (2013).

    Guo, X., Wood, M. F. G., and Vitkin, I. A., “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Applied Optics, Vol.46, Issue 20, pp. 4491-4500, (2007).

    Hecht, E., Optics, Fourth ed. USA: Addison Wesley, (2002).

    Houssier, C. and Sauer, K., “Circular Dichroism and Magnetic Circular Dichroism of the Chlorophyll and Protochlorophyll Pigments,"Journal of the American Chemical Society, Vol.92, Issue 4, pp.779-791, (1969).

    Ishizawa, H., Muro, A., Takano, T., Honda, K., and Kanai, H., “Non-invasive Blood Glucose Measurement Based on ATR Infrared Spectroscopy,” SCIE, (2008).

    Kelly, S.M., Jess, T.J., and Price, N.C., “How to study proteins by circular dichroism,” Biochimica et Biophysica Acta (BBA), Vol.1751, Issue 2, pp. 119-139, (2005).

    Liao, C. C. and Lo, Y. L., “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential-and decomposition-based Mueller matrices,” Optics Express, Vol. 23, Issue 8, pp. 16831-16853, (2013).

    Lin, H. H., Phan, Q. H., and Lo, Y. L., “Characterization of voltage-driven twisted nematic liquid crystal cell by dynamic polarization scanning ellipsometry,” Optics Express, Vol. 21, Issue 14, (2015).

    Mu1ller, T., Wiberg, K. B., and Vaccaro, P. H., “Cavity Ring-Down Polarimetry (CRDP): ,” Journal of the American Chemical Society, Vol.104, Issue 25, pp. 5959-5968, (2000).

    Phan, Q. H., Yang, P. M., and Lo, Y. L., “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sensors and Actuators B: Chemical, pp. 247-254, (2015).

    Tuchin, V. V., Handbook of Optical Biomedical Diagnostics, Vol. PM107. Bellingham, WA: SPIE Optical Engineering Press, (2002).

    Tuchin, V. V., Selected papers on tissue optics: applications in medical diagnostics and therapy, Vol. MS102. Bellingham, WA: SPIE Optical Engineering Press, (1994).

    Vitkin, I. A. and Hoskinson, E., “Polarization studies in multiply scattering chiral media,” Society of Photo-Optical Instrumentation Engineers, Vol.39, Issue 2, pp. 353-362, (2000).

    Wang, S., Sherlock, T., Salazar.B., Sudheendran,N., Manapuram, R.K., Kourentzi, K., and Ruchhoeft, P., “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sensors Journal, Vol.13, Issue 11, pp. 4534-4541, (2013).

    Williams, M. W., “Depolarization and cross polarization in ellipsometry of rough surfaces,” Applied Optics, Vol.25, Issue 20, pp. 3616-3623, (1986)

    Yue, H., Song, L., Hu, Z., Liu, H., Liu, Y., Liu, Y., and Peng, Z., “Characterization of the phase modulation property of a free-space electro-optic modulator by interframe intensity correlation matrix,” Applied Optics, Vol.51, Issue 19, pp. 4457-4462, (2012).

    Zhou, G. X., Schmitt, J. M., and Ellicott, C. E., “Sensitive detection of optical rotation in liquids by reflection polarimetry,” Review of scientific instruments, Vol. 64, Issue 10, pp. 2801-2807, (1993).

    Zhou, Y., Zeng, N., Ji, Y., Li, Y., Dai, X., Li, P., Duan, L., Ma, H., and He, Y., “Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber,” Journal of Biomedical Optics, Vol.16, Issue 1, pp. 015004-1-015004-7, (2011).

    下載圖示 校內:2020-08-18公開
    校外:2020-08-18公開
    QR CODE