簡易檢索 / 詳目顯示

研究生: 郭佳吟
Kuo, Chia-Yin
論文名稱: 使用關聯結構模型改進存活分析相依設限問題並應用於基金資料
Using Copula-Based to Improve Dependent Censoring on Survival Analysis in Hedge Fund Data
指導教授: 温敏杰
Wen, Miin-Jye
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 36
中文關鍵詞: 相依設限Copula-based 模型Cox比例風險模型
外文關鍵詞: Dependent Censoring, Copulas, Cox proportional hazards model
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 避險基金為金融市場中的一種投資商品,其特質是可透過基金經理人融合財務工
    程與金融方面的專業知識操作,然而其具有不透明性且操作不易,對於一般投資者來
    說具有相對高的投資風險,故避險基金在市場上持續交易的時間值得探討。而傳統上
    可使用Cox 比例風險模型來分析在市場上的存活時間,但其有一限制為存活時間與設
    限時間須獨立,但在金融市場中會影響避險基金存活時間的未必只有破產事件,經理
    人操作手法或是環境因素都會使基金撤銷市場,故存活時間與設限時間可能是相依的,
    若使用傳統的存活分析方法可能會使得預測出現誤差,使用關聯結構模型(Copulas)
    可以進一步改進此問題。
    在本研究中,會使用傳統的Cox 比例風險模型與關聯結構改進後的模型進行分析
    並比較其預測結果。所使用的實際資料為Lipper/TASS 數據庫在西元1990 年到2018
    年之間的避險基金資料,在實例分析前,會先進行模擬實驗,假設存活時間與設限時
    間是相依的情況下生成資料並套用Cox 比例風險模型與關聯結構改進的模型,觀察何
    種資料型態下關聯結構模型表現較好。

    Hedge fund is an investment commodity in the financial market. However, due to
    information asymmetry, it is difficult to operate and is associated with relatively high
    investment risks for ordinary investors. Therefore, it is worthy to examine how the
    hedge fund operated in the market. In the financial market, the survival time of hedge
    fund may not only be affected by the bankruptcy event. The operation techniques of
    managers or environmental factors might also cause the fund to withdraw from the
    market. Therefore, the survival time and the censor time may be dependent. As a result,
    the Cox proportional hazards model that assumes independent relationship between
    survival time and the censor time may cause estimation error. In contrast, copulas model
    may provide more accurate estimation as the copulas model is not constraint by the
    independence constraint.
    In the study, Cox proportional hazards model and the copulas model will be used to
    analyze and compare results. The simulation experiment will be carried out prior to case
    analysis, and simulation data will be generated under the assumption that the survival
    time and the censor time are dependent, and the Cox proportional hazards model and
    copulas model will be applied to observe which data type makes copulas model
    performs better.

    摘要 I 英文延伸摘要 II 致謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與簡介 1 1.2 研究目的與架構 1 1.3 文獻探討 2 第二章 研究方法 3 2.1 存活分析(Survival Analysis) 3 2.1.1 Kaplan-Meier存活曲線與Log-Rank檢定 4 2.1.2 Cox比例風險模型 7 2.2 關聯結構模型(Copulas) 9 2.2.1 Copulas 9 2.2.2 Sklar Theorem 10 2.2.3 Archimedean Copula 11 2.3 變數選取-Random Survival Forest 14 第三章 統計模型 17 3.1 基於關聯結構模型下的Cox比例風險模型(Copula-Based Cox Regression) 17 3.2 模型評估指標c-index 19 第四章 模擬 20 4.1 模擬設定 20 4.2 模擬結果 21 第五章 實例分析 26 5.1 資料介紹 26 5.2 資料篩選 28 5.3 敘述統計 29 5.4 分析結果 30 5.4.1 變數選取 30 5.4.2 Cox比例風險模型 32 5.4.3 copula-based模型 33 5.4.4 小結 34 第六章 結論與建議 35 參考文獻 36

    [1]Cox, D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202.
    [2]Emura, T., & Chen, Y. H. (2018). Analysis of survival data with dependent censoring: Copula-Based Approaches. Singapore: Springer.
    [3]Fortin, I., & Kuzmics, C. (2002). Tail‐dependence in stock‐return pairs. Intelligent Systems in Accounting, Finance & Management, 11(2), 89-107.
    [4]Fredheim, M. (2008). Copula methods in finance. VDM Verlag Dr. Müller.
    [5]Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., & Rosati, R. A. (1982). Evaluating the yield of medical tests. Jama, 247(18), 2543-2546.
    [6]Hartmann, P., Straetmans, S., & Vries, C. D. (2004). Asset market linkages in crisis periods. Review of Economics and Statistics, 86(1), 313-326.
    [7]Ishwaran, H., & Kogalur, U. B. (2007). Random survival forests for R. R news, 7(2), 25-31.
    [8]Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The annals of applied statistics, 2(3), 841-860.
    [9]Jaworski, P., Durante, F., Hardle, W. K., & Rychlik, T. (2010). Copula theory and its applications (Vol. 198). Berlin: Springer.
    [10]Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), 457-481.
    [11]Kleinbaum, D. G., & Klein, M. (2005). Survival analysis: a self-learning text (Vol. 3). New York: Springer.
    [12]Kalbfleisch, J. D., & Prentice, R. L. (2011). The statistical analysis of failure time data. John Wiley & Sons.
    [13]Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.

    下載圖示 校內:2024-07-07公開
    校外:2024-07-07公開
    QR CODE