簡易檢索 / 詳目顯示

研究生: 張連達
Chang, Lian-Da
論文名稱: 界面裂紋漸近場高階參數之數值分析
Numerical analysis of higher order parameters for the near-tip fields of an interface crack
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 高階項係數裂縫有限元素分析FEOD方法應力強度因子
外文關鍵詞: coefficient of the higher-order terms, crack, finite element analysis, FEOD method, stress intensity factor
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研究雙層材料界面含一裂縫,受到拉應力或剪應力的作用下計算Williams expansion高階項係數。文中先推導雙層材料界面含一裂縫之位移漸近場表達式,接著說明有限元素超定(FEDO)方法的原理與使用。其次介紹奇異元素的原理與ABAQUS軟體的使用。最後應用FEOD方法求得係數並且針對影響收斂性和精確度的因素做討論與比較。

    This thesis aims to study the parameters of the higher-order terms in the Williams expansion of an interface crack in a bi-material subjected to tensile stress or shear stress load. First, the asymptotic displacement fields of an interface crack are introduced, and then the principle of the Finite Element Over-Deterministic (FEOD) method is introduced. The singularity element as well as the ABAQUS software is also introduced. Finally, the FEOD method is employed to calculate the higher-order parameters in the Williams expansion, and the effects of convergence and accuracy are discussed and compared.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-3 本文綱要 3 第二章 基本公式 5 2-1 雙層材料界面含一中央裂縫之位移漸近場公式 5 2-2 有限元素超定方法 14 第三章 有限元素分析 22 3-1 奇異元素(Singularity element) 22 3-2 套裝軟體:ABAQUS 6.8-1 26 第四章 數值模擬結果與討論 33 4-1 驗證基準問題 33 4-2 驗證中央裂縫平板(Center-cracked plate)問題 34 4-2-1 均質材料純Mode I範例 34 4-2-2 均質材料純Mode II範例 37 4-2-3 驗證他人之相關研究 39 4-3 雙層材料在非均質的情況下計算高階項係數 41 4-3-1 非均質材料Mode I範例 42 4-3-2 非均質材料Mode II範例 45 4-4 項數多寡與節點數量對係數收斂性與準確性的影響 48 4-4-1 環狀取點 48 4-4-2 徑向取點 52 4-5網格切割的疏密對Williams expansion係數的影響 56 第五章 結論 59 參考文獻 61 附錄A 64

    [1] Andrzej, S., Modeling of singular stress fields using finite element method. International Journal of Solids and Structures, Vol.39,4787-4804, 2002.
    [2] Ayatollahi, M.R. and Nejati, M., An over-deterministic method for calculation of coefficient of crack tip asymptotic field from finite element analysis. Fatigure and Fracture of Engineering Materials and Structures, Vol.34, 159-176, 2010.
    [3] Chidgzey, S.R. and Deeks, A.J., Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method. Egineering Fracture Mechanics, Vol.72, 2019–2036, 2005.
    [4] Karihaloo, B. L. and Xiao, Q. Z., Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity. Egineering Fracture Mechanics, Vol.68, 1609-1630, 2001.
    [5] Karihaloo, B. L. and Xiao, Q. Z., Higher order terms of the crack tip asymptotic field for a notched three-point bend beam. International Journal of Fracture, Vol.112, 111–128, 2001.
    [6] Karihaloo, B. L. and Xiao, Q. Z., Higher order terms of the crack tip asymptotic field for a wedge-splitting specimen. International Journal of Fracture, Vol.112, 129–137, 2001.
    [7] Karihaloo, B. L., Abdalla, H. and Xiao, Q. Z., Coefficients of the crack tip asymptotic field for wedge-splitting specimens. Egineering Fracture Mechanics, Vol.70, 2407–2420, 2003.
    [8] Owen, D.R.J. and Fawkes, A.J., Engineering fracture mechanics:numerical methods and applications. Pineridge Press Limited, Swansea, U.K. ,1983.
    [9] Ramesh, K., Gupta, S. and Kelkar, A. A., Evaluation of stress field parameters in fracture mechanics by photoelasticity-revisited. Egineering Fracture Mechanics, Vol.56, 25–45, 1997.
    [10] Rice, J.R., Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics,Vol. 55, 98–103, 1988.
    [11] Sanford, R. J. and Dally, J.W., A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns. Egineering Fracture Mechanics, Vol.11, 621–633, 1979.
    [12] Su, R. K. L. and Feng,W. J., Accurate determination of mode I and II leading coefficients of the Williams expansion by finite element analysis. Finite Elements in Analysis and Design, Vol.41, 1175–1186, 2005.
    [13] Su, R. K. L. and Fok, S. L., Determination of coefficients of the crack tip asymptotic field by fractal hybrid finite elements. Egineering Fracture Mechanics, Vol.74, 1649–1664, 2007.
    [14] Tong, P., Pian, T. H. H. and Lasry, S. J., A hybrid element approach to crack problems in plane elasticity. International Journal for Numerical Methods in Engineering, Vol.7, 297–308, 1997.
    [15] Williams, M. L., On the stress distribution at the base of a stationary crack. Trans. ASME Journal of Applied Mechanics,Vol. 24, 109–114, 1957.
    [16] Xiao, Q. Z. and Karihaloo, B. L., Coefficients of the crack tip asymptotic field for a standard compact tension specimen. International Journal of Fracture, Vol.118, 1–15, 2002.
    [17] Xiao, Q. Z. and Karihaloo, B. L., Direct evaluation of accurate coefficients of the linear elastic crack tip asymptotic field. Fatigue and Fracture of Engineering Materials and Structures, Vol.26, 719–730, 2003.
    [18] Xiao, Q. Z. and Karihaloo, B. L., FEM for evaluation of weight functions for SIF, COD and higher order coefficients with application to a typical wedge splitting specimen. International Journal of Fracture, Vol. 127, 201–237, 2004.
    [19] Xiao, Q. Z., Karihaloo, B. L. and Liu, X. Y., Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element. International Journal of Fracture, Vol. 125, 207–225, 2004.
    [20] Xiao, Q. Z. and Karihaloo, B. L., Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM. Computer Methods in Applied Mechanics and Engineering, Vol.196, 1864–1873, 2007.
    [21] Yoneyama, S., Ogawa, T. and Kobayashi, Y., Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods. Egineering Fracture Mechanics, Vol.74, 1399–1412, 2007.

    無法下載圖示 校內:2013-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE