簡易檢索 / 詳目顯示

研究生: 邱爾發
Khu, Ngee-Huat
論文名稱: 奈米尺寸氧化錳之結構性質於T1顯影功能探討
The Characteristics of Manganese Oxides T1 Contrast Agents of Different Nanostructured Morphologies
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 59
中文關鍵詞: T1顯影劑奈米氧化錳
外文關鍵詞: contrast agents, manganese oxide nanoparticles
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長久以來,發展新型T1顯影劑在核磁共振顯影(Magnetic Resonance Imaging, MRI) 的相關研究扮演重要的角色. 近幾年來, 隨著奈米科技的進步, 氧化錳奈米顆粒逐漸被發展為新型的T1顯影劑, 然而奈米氧化錳的結構特性和顯影能力之間的關係並沒有很清楚的被探討過.
    在這份報告裡, 我們主要合成出不同形狀的奈米四氧化三錳: 正方型,板狀型和圓形,皆小於10奈米尺寸, 希望能探討出不同形狀結構對顯影能力的影響. 首先,通過SQUID量測証實合成出的奈米氧化錳的順磁性. 再從XPS和MRI實驗結果中,我們發現在這三種不同形狀的奈米氧化錳當中,表面帶正三價的奈米氧化錳表現出最好的T1顯影功能;尺寸較小的正方形奈米氧化錳表面帶正四價, 表現出較弱的T1顯影功能. 另外, 從MRI Cells Labeling的實驗得到的結果顯示出含有奈米氧化錳的T1細胞影像訊號強度比沒有奈米氧化錳的T1細胞影像訊號增強了139%, 所施加的奈米氧化錳濃度為1.3X10-2mM. 同時,我們也用暗場式散射顯微鏡(dark field illumination spectroscopy)觀察不同時間下奈米氧化錳進入細胞的情形.
    因此, 我們結論出擁有最好T1顯影功能的板狀形奈米氧化錳有潛力能夠成為新一代的T1顯影劑.

    There is continuous interest in developing manganese-based T1 Magnetic resonance imaging (MRI) contrast agents. While much effort has been made to synthesize manganese chelates, the development of manganese-based nanoparticle, particularly manganese oxides, as MRI contrast agents is burgeoning. However, there is no much report had studied the correlation between the size/shape and contrast enhancement of the nano-sized agents.
    In this report, sub-10-nm nanospheres, nanoplates, and nanocubes of Mn3O4 were synthesized and exhibited paramagnetic behavior at room temperature on the basis of superconducting quantum interference devices (SQUID) measurements. To study the correlation between the size/morphology and the contrast enhancement, we used XPS to characterize the surface charge of these nanoparticles and measured their MRI contrast enhancement. As a result, the surface Mn3+ passivated nanoplates examined by x-ray photoelectron spectroscopy (XPS) had the largest r1 relaxivity of the reported manganese oxide nanoparticles. The MR labeling assays of Mn¬¬3O4 nanoplate-treated A549 lung cancer cells showed that MR signals increased to 139% in T1-weighted images compared with untreated cells when the Mn ion concentration went down to 1.3 X 10-2 mM. A dark field illumination microscope was employed to monitor Mn3O4 nanoplates internalized into cells as a function of time.
    In short, we conclude that nanoplates-like manganese oxides with the high r1 relaxivity could potentially be a new T1 contrast agent in MR imaging.

    中文摘要................................I Abstract......................................II Contents.................................III Table Contents.......................V Figure Contents.............................VI Abbreviation Lists...............................VIII Chapter 1 Introduction..........................1 1.1 Introduction to Nanoscience and Nanotechnology..........................1 1.2 Introduction to Nanomaterials...............2 1.3 Magnetic Properties of Materials...............3 1.4 Synthesis Routes of Superparamagnetic and Paramagnetic Nanoparticles.........5 1.4.1 Thermal Decomposition.......................5 1.4.2 Template Synthetic Approaches...................7 1.4.3 Two Phase Approach........................9 1.5 Surface Functionalization of Magnetic Nanoparticles..........................12 1.6 Applications of Magnetic Nanoparticles...............13 1.6.1 Hyperthermic Treatment.....................13 1.6.2 Targeted Drug Delivery.....................15 1.6.3 Magnetic Nanoparticles and Magnetic Resonance Imaging (MRI)...........17 1.6.3.1 T1- & T2- Relaxation Time Constant.............17 1.6.3.2 Magnetic Resonance Imaging (MRI) T1 Contrast Agent............19 1.6.3.3 Manganese (II) Ion Based T1 Contrast Agent......................20 1.6.3.4 Nanoparticles Based T1 Contrast Agent.............20 Chapter 2 Research Objective and Methodology...........24 2.1 Research Objective..................................24 2.2 Materials.............................25 2.3 Synthesis of Different Sizes and Morphology of Mn3O4 nanoparticles..........25 2.3.1 Synthesis of Mn(SA)2 (Precursor of Mn3O4Nanoparticles).................25 2.3.2 Synthesis of 5nm Mn3O4 Nanocubes, 10nm Mn3O4 Nanoplates, and 9.8nm Mn3O4 Nanospheres.................26 2.3.3 Surface Modification Procedure..................27 2.4 MRI Measurements.........................28 2.4.1 In vitro MRI Measurements...................28 2.4.2 Cellular MRI Measurements....................29 2.5 Cellular Imaging Detected by a Dark Field Illumination Microscope............29 2.6 Cytotoxicity Analysis- MTT Assay....................30 2.7 Particles Characterization............31 Chapter 3 Results and Discussions......................32 3.1 Preparation and Characterization of Mn3O4 Nanoparticles.....................32 3.2 Surface Modification of Mn3O4 Nanoparticles..........38 3.3 ZFC-FC Characterization....................43 3.4 In vitro MRI Measurement............................45 3.5 MR Imaging of Cells Labeling.....................50 3.6 In vitro Cytotoxicity..........................52 3.7 Enhanced Dark Field Light Microscopy Study...........54 Chapter 4 Conclusion............................56 References.........................................57

    1. R.P. Feynman, Popular Science, November 1960, 114-118.
    2. N. Taniguchi, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.
    3. I. Hamley, M. Geoghegan, Nanoscale Science and Technology 2005, Wiley, Page 21.
    4. S. Y. Park, Abigail K. R. Lytton J., B. Lee, S. Weigand, George C. Schatz & C. A. Mirkin, Nature, 451, 553-556
    5. Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, Nature 393, 49-52.
    6. I. Hamley, M. Geoghegan, Nanoscale Science and Technology 2005, Wiley, Page 133-135.
    7. K. L. Kelly, E. Coronado, L. L. Zhao, George C. Schatz, J. Phys. Chem. B 2003, 107, 668-677.
    8. J. W. M. Bulte, D. L. Kraitchman, NMR Biomed 2004, 17, 484.
    9. Dmitry G. Shchukin, Gleb B. Sukhorukov, Ronald R. Price, Yuri M. Lvov, small 2005, 1, No. 5, 510 –513.
    10. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, T. Pal, Journal of Nanoparticle Research 2004, 6, 411–414.
    11. F. X. Redl, C. T. Black, G. C. Papaefthymiou, Robert L. Sandstrom, M. Yin, H. Zeng, C. B. Murray, S. P. O’Brien, J. Am. Chem. Soc. 2004, 126, 14583-14599.
    12. S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204-8205.
    13. K. Woo, J. Hong, S. Choi, H. W. Lee, J. P. Ahn, C. S. Kim, S. W. Lee, Chem. Mater. 2004, 16, 2814-2818.
    14. C. C. Huang, T. Y. Liu, C. H. Su, Y. w. Lo, J. H. Chen, C. S. Yeh, Chem. Mater. 2008, 20, 3840–3848
    15. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc, Chem. Commun, 1994, 801-802
    16. D. Pan, Q. Wangac, L. J. An, J. Mater. Chem. 2009, 19, 1063–1073
    17. N. Zhao, W. Nie, X. B. Liu, S. Z. Tian, Y. Zhang, X. L. Ji, small 2008, 4, No. 1, 77 – 81
    18. R. Hao, R. J. Xing, Z. C. Xu, Y. L. Hou, S. Gao, S. S. Sun, Adv. Mater. 2010, 21, 1–14
    19. U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, Vol. 9, No. 12, 2203-2208
    20. C. G. Hadjipanayis, M. J. Bonder, S. Balakrishnan, X. X. Wang, H. Mao, and G. C. Hadjipanayis, small 2008, 4, No. 11, 1925–1929
    21. A. S. Lubbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrinann, R. Gurtler, P. Hohenberger, N. Haas, et. al, Cancer Research 56. 4686-4693. October 15. 19961
    22. S. H. Hu, S. Y. Chen, D. M. Liu, C. S. Hsiao, Adv. Mater. 2008, 20, 2690–2695
    23. Randalle. Lauffer, Chem. Rev. 1907. 87. 901-927
    24. Y. W. Jun, J. H. Lee, J. Cheon, Angew. Chem. Int. Ed. 2008, 47, 5122 – 5135
    25. Hyon B. N., I. C. Song, T. Hyeon, Adv. Mater. 2009, 21, 2133–2148
    26. Peter Caravan, Jeffrey J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352
    27. G. Elizondo, C. J. Fnetz, D. D. Stank, S. M. Rocklage, S. C. Quay, D. Wonah, Y. M. Tsang, M. C. Mei Chen, J. T. Ferrucci, Radiology, 1991, 178, 73-78
    28. Hyon B. N., T. Hyeon, J. Mater. Chem. 2009, 19, 6267–6273
    29. F. Evanics, P. R. Diamente, F. C. J. M. van Veggel, G. J. Stanisz, R. S. Prosser, Chem. Mater. 2006, 18, 2499-2505
    30. H. Hifumi, S. Yamaoka, A. Tanimoto, D. Citterio, K. Suzuki, J. Am. Chem. Soc. 2006, 128, 15090-15091
    31. Hyon B. N., J. H. Lee, K. An, Y. I. Park, M. Park, I. S. Lee, D. H. Nam, S. T. Kim, S. H. Kim, S. W. Kim, K. H. Lim, K. S. Kim, S. O. Kim, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 5397 –5401
    32. J. Shin, R. M. Anisur, M. K. Ko, G. H. Im, J. H. Lee, I. S. Lee, Angew. Chem. Int. Ed. 2009, 48, 321-324
    33. Gonen, M, Balkose, D, Inal, F, UlKu, S, Ind. Eng. Chem. Res. 2005, 44, 1627.
    34. Aviram, A., Pomerzntz, M. Solid State Commun. 1982, 41, 297.
    35. Vold, M. J., Hattiangdi, G. S., Vold, R. D. J. Colloid Sci. 1949, 4, 93.
    36. X. Peng, Adv. Mater. 2003, 15, 459–463
    37. Yang J.C., Jablonsky M.J., Mays J.W., Polymer 2002, 43, 5125-32.
    38. Bekri-Abbes I, Bayoudh S, Baklouti M, Desalination 2007, 204, 198-203
    39. Alsagheer F.A., Hasan M.A., Pasupulety L, Zaki M.I., J Mater Sci Lett. 1999,18, 209-211.
    40. M. Salavati-Niasari, F. Davar, M. Mazaheri, Polyhedron 2008, 27, 3467-3471.
    41. Ishii M., Nakahira M., Solid State Commun 1972, 11, 209-212
    42. Ardizzone S., Bianchi C.L., Tirelli D., Colloids Surf A Physicochem Eng Asp 1998, 134, 305-312.
    43. Di Castro V., Polzonetti D., J Electron Spectros Relat Phenomena 1989, 48, 117-123.
    44. Dwight K., Menyuk N., Phys Rev 1960, 119, 1470-1479.
    45. Seo W.S., Jo H.H., Lee K., Kim B, Oh S.J., Park J.T., Angew Chem Int Ed 2004, 43, 1115-1117.
    46. Xu H.Y., Xu S, Wang H., Yan H., J Electrochem Soc 2005, 152, C803-C807.
    47. An K., Kwon S.G., Park M., Na H.B., Baik S.L., Yu J.H., et al. Nano Lett 2008, 8, 4253-4258.
    48. Yu T., Moon J., Park J., Park Y.L., Na H.B., Kim B.H., Chem Mater 2009, 21, 2272-2279
    49. H. Weinkauf, B. F. Brehm-Stecher, Biotechnol. J. 2009, 4, 871-879

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE