| 研究生: |
李承宥 Lee, Cheng-Yu |
|---|---|
| 論文名稱: |
以Ansys fluent 建立化學機械研磨模型針對晶圓移除率與不均勻度之研究 The Study of Wafer Removal Rate and Non-uniformity for Chemical Mechanical Polishing Modeling using Ansys Fluent |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 計算流體動力學 、研磨墊溝槽型式 、研磨粒子流動 、漿料質量分布 |
| 外文關鍵詞: | Computational Fluid Dynamics, Polishing Pad Groove Pattern, The Flow Visualization of Abrasive, The Mass Fraction Distribution of Slurry |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在使用Ansys Fluent®建立一化學機械研磨(Chemical Mechanical Polishing, CMP)模型,利用計算流體動力學(Computational Fluid Dynamics, CFD),模擬研磨液在晶圓和研磨墊(CMP)之間的界面中的行為。
首先使用多相模型方程式模擬研磨液粒子的流動,了解其粒子運動及其在研磨墊子分布情況,並使用不同溝槽型式之研磨墊分析其型貌變化對於晶圓移除率與不均勻度的影響,在相同操作條件下,以同心圓墊和徑向槽墊兩種不同之幾何設定參數模擬後探討其壁面剪應力、晶圓表面在某特定時間下之研磨液質量分布、以及其壓場分布。
根據研究結果顯示,徑向槽之壁面剪應力較大,同心圓之壓場分布中之負壓區較大,以及逕向槽中之晶圓漿料質量分布較為均勻,因同心圓墊溝槽所占面積比較大,研磨液粒子數在溝槽停留較多,因此實際作用於研磨面之有效磨粒數減少,晶圓移除率隨之下降。得知溝槽之所占面積比增加將會降低其移除率。
This study aims to establish a Chemical Mechanical Polishing (CMP) model using Ansys Fluent® and simulate the behavior of the polishing slurry at the interface between the wafer and the polishing pad using Computational Fluid Dynamics (CFD).
Firstly, the multiphase model equations are used to simulate the flow of the polishing slurry particles, understand their particle motion, and their distribution on the polishing pad. Different groove patterns on the polishing pad are analyzed to investigate the effects of their morphological changes on wafer removal rate and uniformity. Under the same operating conditions, simulations are conducted with two different geometric configurations: concentric grooves and radial grooves. The study examines the wall shear stress, mass distribution of the polishing slurry on the wafer surface at a specific time, and the pressure field distribution.
According to the research results, the radial grooves exhibit higher wall shear stress, larger negative pressure region in the pressure field distribution of concentric grooves, and more uniform mass distribution on the wafer surface in the radial grooves. Due to the larger area occupied by the concentric grooves, more polishing slurry particles reside in the grooves, resulting in a reduced effective abrasive particle count acting on the polishing surface and consequently decreasing the wafer removal rate. It is concluded that an increase in the area occupied by the grooves will lead to a decrease in the removal rate.
[1]D. Watts, N. Kimura, M. Tsujimura: Microelectronic Packaging, CRC Press (2004).
[2] J. McGrath, C. Davis: Journal of Materials Processing Technology, Vol. 153-154, (2004), p666.
[3]Zhong ZW Recent advances in polishing of advanced materials.Materials and Manufacturing Processes 23(5):449–456,(2008)
[4]Levert JA, Korach CS CMP friction as a function of slurry silica nanoparticle concentration and diameter. Tribology Transactions,(2009).
[5]Phatak, U.; Bukkapatnam, S.; Kong, Z.; Komanduri, R. Sensor-based modeling of slurry chemistry effects on the material removal rate (MRR) in copper-CMP process. Int. J. Mach. Tools Manuf. 2009, 49, 171–181.
[6]魏進忠, 洪政豪, 賴瑞軒,劉偉倫”行政院國家科學委員會專題研究計畫成果報告, 化學機械研磨(CMP)之研磨墊溝槽幾何設計與磨耗對於晶圓移除率與均勻度影響研究”,(2008)
[7] Z. W. Zhong, Yebing Tian , Modeling and simulation for the distribution of slurry particles in chemical mechanical polishing, Adv Manuf Technol,(2014)
[8]Li, J.; Huang, J.; Hua, C.;Wang, J.; Zhu, Y.; Zuo, D. Design of surface grooves on a polishing pad based on slurry uniform flow.Int. J. Adv. Manuf. Technol. 103, 4795–4803 ,(2019)..
[9] B.E. Launder and D.B. Spalding. "Lectures in mathematical models of turbulence," Academic Press, London, Englandd,(1972).
[10]J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer Science & Business Media, (2012)
[11] Philipossian, A.; Borucki, L.; Sampurno, Y.; Zhuang, Y. Novel slurry injection system for improved slurry flow and reduced,(2014) defects in CMP.In Solid State Phenomena; Trans Tech Publications Ltd.:Freienbach,Switzerland,(2015).
[12] T. Sun, Y. Zhuang, L. Borucki, A. Philipossian, Characterization of pad–wafer contact and surface topography in chemical mechanical planarization using laser confocal microscopy, (2010)
[13] Zhou, C.; Shan, L.; Hight, J.R.; Ng, S.; Danyluk, S. Fluid pressure and its effects on chemical mechanical polishing. Wear (2002)
[14] Muldowney, G.P. Modeling CMP transport and kinetics at the pad groove scale. MRS Online Proc. Libr. (2004)
[15]Zantye, P.B.; Kumar, A.; Sikder, A. Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R Rep.(2004)
[16] Horng J. H.*, and Wei C. C. , "Analysis of a Three-Body Contacting Model with the Adhesive Effect," CIST and ITS-IFToMM2008, Beijing, China,(2008).
[17] Lee, H.; Lee, D.; Jeong, H. Mechanical aspects of the chemical mechanical polishing process: A review. Int. J. Precis. Eng. Manuf.,17, 525–536, (2016)
[18] Guo, Y.C.; Lee, Y.K.; Lee, H.S.; Jeong, H.D. Research on CMP characteristics attribute to groove size. In Advanced Materials Research;Trans Tech Publications Ltd.: Freienbach, Switzerland,(2011).
[19] Cho, Y., Liu, P., Jeon, S., Lee, J., Bae, S., Hong, S., Kim, Y.H., Kim, T.,Simulation and experimental investigation of the radial groove effect on slurry flow in oxide chemical mechanical polishing(2022).
[20] Muldowney, G.P. Modeling CMP transport and kinetics at the pad groove scale. MRS Online Proc. Libr., 816, K5.3. (2004)
[21]袁啟文。化學機械研磨製程之控片與樣片之移除率及不平坦度預測與分析。國立交通大學,機械工程研究所碩士論文(民97)。
[22]Rogers,C.;Coppeta,J.;Racz,L.;Philipossian,A.;Kaufman,F.;Bramono,D.Analysis of flow between a wafer and pad during CMP processes.J.Electron.Mater.27,1082–1087.(1998).
[23]Pritchard, P.J.; Mitchell, J.W. Fox and McDonald’s Introduction to Fluid Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2016.
[24] Hong,S.,Bae, S.,Choi, S.,Liu,P.,Kim,H.,Kim,T.A numerical study on slurry flow with CMP pad grooves.Microelectron.Eng.234,111437.(2020).
[25]Lee, H., Kim, H., Jeong, H.. Approaches to sustainability in chemical mechanical polishing (CMP): a review. Int. J. Precis. Eng. Manuf. -Green. Technol. 1–19(2021).