| 研究生: |
郭人華 Guo, Ren-Hua |
|---|---|
| 論文名稱: |
聚乙醚電解質溶液導電性之分子模擬 Molecular Dynamics Simulations of the Ionic Conductivity and Diffusivity in Polyethylene Oxide/ Electrolyte Solutions |
| 指導教授: |
施良垣
Shy, Liang-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 擴散 、導電 、高分子 、動態模擬 |
| 外文關鍵詞: | conductivity, diffusion, polymer, dynamics simulation |
| 相關次數: | 點閱:101 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇以分子動力模擬的方法研究高分子電解質LiCF3SO3/聚乙醚之離子擴散、導電、配位及集結性質等。研究之聚乙醚有兩種,其兩端分別以OH基及甲基結尾(簡稱PEO及PET),聚合度均為13。模擬之條件參考Ward等人之實驗參數,於2種溫度(398 及428 K)及三種濃度(EO:Li分別為5:1及10:1及15:1)下進行。此處EO為聚乙醚中之氧原子數,Li則為鋰之離子數。
模擬所得之鋰離子與F原子之擴散係數與NMR實驗之測量值頗為接近。依據Nernst-Einstein方程式計算之莫耳導電度也與實驗傾向一致。模擬結果顯示,來自於聚乙醚之氧原子比CF3SO3-者更易與鋰形成配位,但高溫不利於此配位之形成。當溫度固定時,鋰鹽濃度之增加使得離子群的生成更為明顯,同時鋰與聚合物形成高配位之機率也隨之降低。PEO系統之導電度小於PET者,主要是由於PEO尾端之OH基與CF3SO3-形成氫鍵所致。
Molecular dynamics simulations have been used to study the properties of ionic diffusion, conductivity, coordination and association for polymer electrolyte LiCF3SO3/poly(ethylene oxide). Both the hydroxyl terminated (PEO) and methyl terminated (PET) polyethers with a degree of polymerization of 13 were investigated. Simulations were conducted at 2 temperatures (398 and 428 K) and 3 concentrations (EO:Li = 5:1, 10:1, and 15:1) to mimic the experiment of Ward et al. Here, EO in the number of oxygen atoms in polyether, and Li in the number of Li ions.
The simulated diffusion coefficients of Li+ and F atom agree well with NMR measurements. The computed molar conductivities from the Nernst-Einstein equation also have the same trend as that of experiment. It is shown that the oxygen atoms of polyether are more likely to coordinate with Li+ ion than that of CF3SO3-. But high temperature is unfavorable for this coordination. At constant temperature, the increasing lithium salt concentration boosts the ionic aggregation, but the probability for Li+ to form high coordinations decreases. The molar conductivity of PEO system is lower than that of PET, owing to the hydrogen bond formation between terminal OH group of PEO and CF3SO3-.
(1) F. Gray, Solid Polymer Electrolytes Fundamentals and Technological Applications.
(2)P. V. Wright, Br. Polym. J., 7, 319(1975)
(3)G.Gordo , J. Chem. Soc. Faraday Trans, 83, 3345(1987)
(4)C. A. Kraus , J .Am. Chem. Soc., 55, 21(1933)
(5)S.Scyhanez,Solid State Ionics, 28-30, 1047(1988)
(6)G. Peterson,. Electro. Chem. Acta, 37, 1495(1992)
(7) A. Palma, Alfredo Pasquarello, Gioranni Liccotti, Roberto Car, J.Chem. Phys., 23, 9933 (1998)
(8)J. k. Hyun, J .Phys. Chem. B, 105,3329(2001)
(9)O. Bordin, J. Phys, Chem. B, 104, 8017(2000)
(10) S, A, Leng, S.A.Leng, I.M.Ward, Solid State Ionics, 45, 261, (1991)
(11).N.Theodoroa and U.W.Suter, Macromolecules, 18, 1206 1985)
(12)J.N.Baskir and U.W.Suter, Macromolecules, 21,1877 (1988)
(13)Discover user guide partl. Biosym/Msl Technologies V2.8 (1992)
(14)B.H.Zimn, J.Chern. Phys., 21,934 (1953)
(15)B.H.Zimn and J.L.Lundberg, J.Phys.Chem.,60,425 (1956)
(16)J.L.Lundberg, J.Macromol. Sci., 133.693 (1969)
(17)J..M.Haile, “Molecular dynamics simulations”, New York, (1992)
(18)G.Petersen, P.Jacobsson, Electrochimica Acta, 37,1495 (1992)
(19)Jin-Kee Hyun, J.Phys. Chem., 105,3329 (2001).
(20)R.H.Fuoss, J.Am.Chem. Soc., 57,2604 (1935)
(21)Oleg Borodin, Grant D. Smith, J.Phys. Chem. B., 104,8017 (2000)