簡易檢索 / 詳目顯示

研究生: 李權恩
Li, Quan-En
論文名稱: 考量多目標之定性及定量因子替代模型於參數校調程序
Surrogate-Assisted Tuning Procedure With Qualitative and Quantitative Factors for Multiple Responses
指導教授: 陳瑞彬
Chen, Ray-Bing
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 51
中文關鍵詞: 電腦實驗多輸出高斯過程序列設計卷積神經網路
外文關鍵詞: Computer experiments, multi-output Gaussian process, sequential design, convolutional neural network
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在資料科學領域中,為使模型具有良好的性能(Performance),選取適當的超參數(Hyper-parameter)至關重要,而根據超參數的類型可分做類別型的定性因子(Qualitative Factors)及連續型的定量因子(Quantitative Factors)。本論文期望在同時具有上述兩類型因子的情境下,為多個受雜訊(Noise)影響的評估指標建立替代模型(Surrogate Model),了解因子與評估指標之間的關係,並將其作為多目標(Multiple Responses)的最佳化問題,探討如何在有限的計算成本下找出模型多項評估指標的柏拉圖集合(Pareto Set)及對應因子設計的非支配解集合(Non-dominated Solution Set)。整體實驗流程主要以(1)應用多輸出高斯過程模型(Multi-output Gaussian Process Model);(2)依據多目標填充準則(Infill Criteria)進行序列設計(Sequential Design),透過上述兩步驟的迭代來優化當前所蒐集的柏拉圖集合。在數值實驗中以目標函數之間是否具有相關性設計兩種不同情境進行序列實驗,透過迭代的過程比較不同多輸出高斯過程模型以及填充準則在兩種情境下的優劣。而應用分析以卷積神經網路模型(Convolutional Neural Network)的超參數優化為例。本論文利用多任務之定性及定量型高斯過程模型(Multi-task QQGP)結合後驗估計之超容積期望改進量(Posterior-based Expected Hypervolume Imporvement)執行最佳化程序,在迭代的過程逐步找出神經網路模型於 Macro F1 及 Micro F1 兩項指標的柏拉圖集合。

    This thesis mainly focuses on surrogate-assisted tuning procedures for qualitative and quantitative factors in multiple response models with noises. Basically, a surrogate-assistant approach iterates the following two steps until a stop criterion is met. First based on the current explored points, a surrogate surface is constructed and then due to the surrogate model, an infill criterion is adopted to identify the next explored point.
    In this thesis, we treat the tuning problem as a multi-objective optimization problem. In order to efficiently construct the Pareto set via a surrogate-assistant approach, first a surrogate construction approach for multiple responses is introduced to deal with the qualitative and quantitative factors scenario and then the corresponding infill criterion is also modified. To illustrate the performance of this surrogate-assistant approach, two numerical experiments are illustrated due to the different correlations among the responses.
    Here a tuning problem for a CNN model is studied. The two responses are Macro F1 and Micro F1 scores and we treated them as random responses. Overall tuning results show that the proposed surrogate-assistant approach can quickly identify the proper Pareto set.

    摘要I 目錄VI 表目錄VII 圖目錄VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 2 第二章 文獻回顧 3 2.1 高斯過程模型(Gaussian Process Model) 3 2.2 填充準則(Infill Criteria) 5 第三章 方法 6 3.1 切片拉丁方格設計(Sliced Latin Hypercube Design) 7 3.2 多輸出定 性及定量型高斯過程模型(Multi-output QQGP) 10 3.2.1 多目標定性及定量型高斯過程模型(Multi-objective QQGP) 13 3.2.2 多任務定性及定量型高斯過成模型(Multi-task QQGP) 15 3.3 期望超容積改進量(Expected Hypervolume Improvement) 17 3.3.1 觀測樣本之期望超容積改進量(Observed-based EHVI) 18 3.3.2 後驗估計之期望超容積改進量(Posterior-based EHVI) 19 3.4 貢獻率(Contribution Rate) 19 第四章 數值實驗 21 4.1 多目標函數 21 4.1.1 目標函數間具有相關性 22 4.1.2 目標函數間無相關性 24 4.2 實驗設計與流程 26 4.3 實驗結果 27 4.3.1 目標函數間具有相關性 27 4.3.2 目標函數間無相關性 31 第五章 卷積神經網路模型超參數校調 36 5.1 型卷積神經網路模型 36 5.1.1 卷積層(Convolution Layer) 37 5.1.2 池化層(Pooling Layer) 38 5.1.3 全連結層(Fully Connected Layer) 39 5.2 實驗設計與流程 40 5.2.1 資料集介紹 40 5.2.2 模型選擇 41 5.2.3 超參數介紹 41 5.3 實驗結果 44 5.3.1 一個五水準定性因子及一個定量因子 45 5.3.2 一個四水準定性因子及二個定量因子 47 第六章 結果與未來展望 49 6.1 未來發展 49 參考文獻 50

    Bonilla, E. V., Chai, K., & Williams, C. (2007). Multi-task Gaussian process prediction. Advances in neural information processing systems, 20.
    Ba, S., Myers, W. R., & Brenneman, W. A. (2015). Optimal sliced Latin hypercube designs. Technometrics, 57(4), 479-487.
    Cao, Y., Smucker, B. J., & Robinson, T. J. (2015). On using the hypervolume indicator to compare Pareto fronts: Applications to multi-criteria optimal experimental design. Journal of Statistical Planning and Inference, 160, 60-74.
    Emmerich, M., & Klinkenberg, J. W. (2008). The computation of the expected improvement in dominated hypervolume of Pareto front approximations. Rapport technique, Leiden University, 34, 7-3.
    Emmerich, M. T., Deutz, A. H., & Klinkenberg, J. W. (2011, June). Hypervolume-based expected improvement: Monotonicity properties and exact computation. In 2011 IEEE Congress of Evolutionary Computation (CEC) (pp. 2147-2154). IEEE.
    Goulard, M., & Voltz, M. (1992). Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Mathematical Geology, 24(3), 269-286.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
    Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4), 455-492.
    Keane, A. J. (2006). Statistical improvement criteria for use in multiobjective design optimization. AIAA journal, 44(4), 879-891.
    Liu, H., Cai, J., & Ong, Y. S. (2018). Remarks on multi-output Gaussian process regression. Knowledge-Based Systems, 144, 102-121.
    Mwebaze, E., Gebru, T., Frome, A., Nsumba, S., & Tusubira, J. (2019). iCassava 2019 fine-grained visual categorization challenge. arXiv preprint arXiv:1908.02900.
    Nguyen, T. V., & Bonilla, E. V. (2014, July). Collaborative Multi-output Gaussian Processes. In UAI (pp. 643-652).
    Qian, P. Z. G., Wu, H., & Wu, C. J. (2008). Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics, 50(3), 383-396.
    Sobester, A., Forrester, A., & Keane, A. (2008). Engineering design via surrogate modelling: a practical guide. John Wiley & Sons.
    Swersky, K., Snoek, J., & Adams, R. P. (2013). Multi-task bayesian optimization. Advances in neural information processing systems, 26.

    無法下載圖示 校內:2027-07-22公開
    校外:2027-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE