| 研究生: |
王信棻 Wang, Hsin-Fen |
|---|---|
| 論文名稱: |
應用集成混合空間模型推估通勤時間二氧化氮濃度之時空變異與分布:以臺灣本島為例 Application of Ensemble Mixed Spatial Model for Estimating Nitrogen Dioxide Spatiotemporal Variation during Commuting Periods: An Example of Main Island of Taiwan |
| 指導教授: |
吳治達
Wu, Chih-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 二氧化氮 、通勤時段 、機器學習演算法 、集成學習法 、集成混合空間模型 |
| 外文關鍵詞: | Nitrogen dioxide, Commuting periods, Machine learning algorithm, Ensemble learning, Ensemble mixed spatial model |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化氮(Nitrogen dioxide, NO2)的生成與人為產業活動及交通移動行為密切。其反應活潑,涉及複雜光化學反應會衍生出有害二次汙染物。除此之外,NO2會對人體健康造成急性與長期呼吸道與心血管系統相關危害。隨著對空污議題的重視,政府更修法提高室外NO2濃度的管控標準。現行全台範圍高品質NO2濃度監測主要來自環保署監測站,然而有限測站的觀測難以有效描述NO2在時空上連續的分布與變化。除此之外,每日通勤過程是人們暴露於室外汙染的主要時段。在上午與下午通勤時段的尖峰車潮與龐大污染排放量,使得室外NO2暴露量在通勤期間達到每日高峰。然而過往模擬大範圍NO2研究僅考慮晝夜差異,未能良好考慮人為戶外活動的主要時段。綜上所述,精準地針對通勤尖峰時段,評估NO2濃度在大範圍濃度的時空分布是當今迫切的課題。近年科技的演進使得機器學習(Machine Learning, ML)在空汙推估領域已廣泛運用且展現良好預測性能;又單一模型在預測準確度上有限,因此本研究基於集成學習概念建立出集成混合學習模型(Ensemble Spatial Mixed Model, EMSM),其結合空間資訊技術並擷取空間內插、機器學習等方法的特長。本研究旨在運用集成混合學習模型推估臺灣本島NO2濃度在上午與下午通勤時段的時空變異與分布。
臺灣本島四面環海且境內地勢起伏明顯,人口高度集中於西半部都市,眾多汽機車與工業區排放源為人民健康帶來隱憂。本研究使用1994至2019年臺灣本島74個環保署測站NO2監測值,並計算為上午通勤(早上7:00-9:00)與下午通勤(下午16:00-18:00)時段平均值。本研究納入空氣汙染物、氣象、土地利用等8大類潛在影響變數以建立NO2濃度推估模型。考慮NO2的時空自相關特性,運用空間內插法產製NO2推估值作為預測變數。在變數篩選上,本研究採用統計迴歸與機器學習兩種策略:首先藉由逐步迴歸法篩選並建立兩種土地利用迴歸模型;針對機器學習模型,透過計算並排序預測變數的SHAP(SHapley Additive exPlanations)值進而辨識出重要變數,再分別以5種演算法建模並評估模型表現,包括隨機森林(Random Forest, RF)、梯度提升機(Gradient Boosting, GBM)、極限梯度提升機(eXtreme Gradient Boosting, XGBoost)、輕量級梯度提升機(Light Gradient Boosting, LightGBM)以及類別梯度提升(Categorical Boosting, CatBoost)。集成混合空間模型係由5種機器學習模型中預測能力良好且未有過擬合問題模型之預測值作為預測變數,經由堆疊泛化集成方式再次擬合而成。經過模型驗證比較各方法學模型推估性能,並選擇預測性能最佳模型產製NO2濃度時空分布圖。
研究成果顯示:集成混合空間模型在上午與下午時段模型Adjusted R2皆為0.90,其解釋能力分別較傳統土地利用迴歸高出22%與23%;在前5%極端高值資料仍有50%與66%的中等預測水準,較單一機器學習模型穩定。經由內部與外部資料驗證證實模型可靠穩健且無過擬合問題,在不同空間與時間尺度皆有良好預測表現,模型也具備適宜的外推應用性。從長期(1994至2019年)臺灣本島高空間解析度(50m)推估成果觀察上午與下午通勤時段NO2濃度的時空分布趨勢:空間上,西半部市區濃度較高、中央與東部山區濃度較低,在臺北市與高雄市區出現高濃度群聚特徵;時間上,NO2濃度在兩通勤時段相近,因混合層高度差異導致NO2在冬季較高、夏季較低。長期而言全台各地濃度呈顯著下降趨勢,也存在平日與周末的濃度差異。從2021年實施COVID-19全國三級警戒的情境中,也觀察到整體NO2濃度下降、空氣品質改善的狀況。本研究證明,集成混合空間具備空間內插、機器學習演算法與集成學習法各自的優點,能準確地推估臺灣通勤時段NO2的時空分布與變異狀況。本模型推估成果能運用於評估通勤尖峰時段的個人健康風險或通勤,提供公共衛生決策與交通管理政策擬定之參考。
Exposure to Nitrogen dioxide (NO2) could cause adverse health effects including respiratory and cardiovascular diseases. Elevated outdoor NO2 concentrations are emitted during daily rush hours when people are primarily exposed to outdoor NO2. However, limited studies focused on estimating NO2 during commuting periods at large spatial coverage. To overcome this challenge, this study applied an Ensemble mixed spatial model (EMSM) which integrated kriging interpolation, machine learning, and ensemble learning to better portray NO2 variations during commuting periods.
Long-term (1994-2019) NO2 observations from 74 Taiwan EPA stations were aggregated depending on the morning (7:00 am-9:00 am) and dusk (4:00 pm-6:00 pm) commuting periods. Eight types of potential predictors were collected. Two land use regression (LUR) models were constructed by the regression variable selection approach. Important variables of machine learning (ML) algorithms were ranked and identified by the SHAP (SHapley Additive exPlanations) value approach. By combining NO2 estimations from ML models, finalized NO2 estimates were predicted by the Ensemble mixed spatial model (EMSM). After model validation, long-term (1994-2019) daily NO2 distribution maps of Taiwan were produced by the EMSM model.
The results revealed that EMSM outperformed other models with Adjusted R2 of 0.90 for both commuting periods. Compared with the LUR model, model prediction capability improves by 22% and 23%. This study demonstrated that EMSM could combine the merits of spatial interpolation, machine learning, and ensemble learning. It could estimate the spatiotemporal variation of NO2 level with a 50 m resolution in the main island of Taiwan during commuting periods.
內政部戶政司(2022) 鄉鎮土地面積及人口密度 內政部戶政司https://www.ris.gov.tw/app/portal/346
中華民國行政院 (2023) 國情簡介-土地 中華民國行政院
https://www.ey.gov.tw/state/235266A41238ECCE
中華民國交通部 (2023a) 統計查詢網 機動車輛登記數 中華民國交通部
https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=11100
中華民國交通部 (2023b) 公路交通量調查統計表 中華民國交通部
中國氣象局 (2013) 降雨量等級 中國氣象局
https://www.cma.gov.cn/2011xzt/2013zhuant/20130620_3/2013062002/201308/t20130816_223400.html
經濟部工業局 (2023) 臺灣工業用地供給與服務資訊網-工業區統計 經濟部工業局
https://idbpark.moeaidb.gov.tw/Environ/statistical
行政院環保署 (2023a) 空品之最 環保署空氣品質監測網
https://airtw.epa.gov.tw/CHT/Encyclopedia/pedia09/pedia9_2.aspx
行政院環保署 (2023b) 空氣品質標準法規 環保署空氣品質監測網
https://airtw.epa.gov.tw/cht/Information/Standard/Rules.aspx
Achakulwisut, P., Brauer, M., Hystad, P., & Anenberg, S. C. (2019). Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. The Lancet Planetary Health, 3(4), e166-e178. https://www.sciencedirect.com/science/article/pii/S2542519619300464?via%3Dihub
Araki, S., Shima, M., & Yamamoto, K. (2018). Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Science of The Total Environment, 634, 1269-1277.
Artun, G. K., Polat, N., Yay, O. D., Üzmez, Ö. Ö., Arı, A., Tuygun, G. T., Elbir, T., Altuğ, H., Dumanoğlu, Y., & Döğeroğlu, T. (2017). An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling. Atmospheric Environment, 150, 331-345.
Babaan, J., Hsu, F. T., Wong, P. Y., Chen, P. C., Guo, Y. L., Lung, S. C. C., Chen, Y. C., & Wu, C. D. (2023). A Geo-AI-based ensemble mixed spatial prediction model with fine spatial-temporal resolution for estimating daytime/nighttime/daily average ozone concentrations variations in Taiwan. Journal of Hazardous Materials, 446, 130749. https://www.sciencedirect.com/science/article/pii/S0304389423000316?via%3Dihub
Bao, R., & Zhang, A. (2020). Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Science of The Total Environment, 731, 139052.
Beckerman, B. S., Jerrett, M., Serre, M., Martin, R. V., Lee, S. J., Van Donkelaar, A., Ross, Z., Su, J., & Burnett, R. T. (2013). A hybrid approach to estimating national scale spatiotemporal variability of PM2. 5 in the contiguous United States. Environmental science & technology, 47(13), 7233-7241.
Beelen, R., Hoek, G., Pebesma, E., Vienneau, D., De Hoogh, K., & Briggs, D. J. (2009). Mapping of background air pollution at a fine spatial scale across the European Union. Science of The Total Environment, 407(6), 1852-1867. https://www.sciencedirect.com/science/article/pii/S0048969708011856?via%3Dihub
Bell, M. L., & Davis, D. L. (2001). Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental health perspectives, 109(suppl 3), 389-394.
Boogaard, H., Patton, A., Atkinson, R., Brook, J., Chang, H., Crouse, D., Fussell, J., Hoek, G., Hoffmann, B., & Kappeler, R. (2022). Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environment international, 164, 107262. https://www.sciencedirect.com/science/article/pii/S016041202200188X?via%3Dihub
Breton, C. V., Wang, X., Mack, W. J., Berhane, K., Lopez, M., Islam, T. S., Feng, M., Lurmann, F., McConnell, R., & Hodis, H. N. (2012). Childhood air pollutant exposure and carotid artery intima-media thickness in young adults. Circulation, 126(13), 1614-1620.
Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., Pryl, K., Van Reeuwijk, H., Smallbone, K., & Van Der Veen, A. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11(7), 699-718.
Brokamp, C., Jandarov, R., Rao, M., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1-11.
Chan, T. C., Pai, C. W., Wu, C. C., Hsu, J. C., Chen, R. J., Chiu, W. T., & Lam, C. (2022). Association of air pollution and weather factors with traffic injury severity: a study in Taiwan. International journal of environmental research and public health, 19(12), 7442. https://mdpi-res.com/d_attachment/ijerph/ijerph-19-07442/article_deploy/ijerph-19-07442.pdf?version=1655460685
Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., Van Donkelaar, A., Hvidtfeldt, U. A., & Katsouyanni, K. (2019). A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environment international, 130, 104934.
Chen, T. H., Hsu, Y. C., Zeng, Y. T., Lung, S. C. C., Su, H. J., Chao, H. J., & Wu, C. D. (2020). A hybrid kriging/land-use regression model with Asian culture-specific sources to assess NO2 spatial-temporal variations. Environmental Pollution, 259, 113875. https://www.sciencedirect.com/science/article/pii/S0269749119350109?via%3Dihub
Cheng, Y. H., Shiu, B. T., Lin, M. H., & Yan, J. W. (2013). Levels of black carbon and their relationship with particle number levels—observation at an urban roadside in Taipei City. Environmental Science and Pollution Research, 20, 1537-1545.
Chou, C. C. K., Liu, S. C., Lin, C. Y., Shiu, C. J., & Chang, K. H. (2006). The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmospheric Environment, 40(21), 3898-3908.
Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C., Yang, N., & Ma, H. (2020). Air pollutant correlations in China: secondary air pollutant responses to NO x and SO2 control. Environmental Science & Technology Letters, 7(10), 695-700.
Chuang, K. J., Lin, L. Y., Ho, K. F., & Su, C. T. (2020). Traffic-related PM2. 5 exposure and its cardiovascular effects among healthy commuters in Taipei, Taiwan. Atmospheric Environment: X, 7, 100084.
Chuang, K. J., Yan, Y. H., Chiu, S. Y., & Cheng, T. J. (2011). Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occupational and environmental medicine, 68(1), 64-68.
Clapp, L. J., & Jenkin, M. E. (2001). Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmospheric Environment, 35(36), 6391-6405. https://www.sciencedirect.com/science/article/pii/S1352231001003788
Collart, P., Dubourg, D., Levêque, A., Sierra, N. B., & Coppieters, Y. (2018). Short-term effects of nitrogen dioxide on hospital admissions for cardiovascular disease in Wallonia, Belgium. International journal of cardiology, 255, 231-236.
Devalia, J., Rusznak, C., Herdman, M., Trigg, C., Davies, R., & Tarraf, H. (1994). Effect of nitrogen dioxide and sulphur dioxide on airway response of mild asthmatic patients to allergen inhalation. The Lancet, 344(8938), 1668-1671.
Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M. B., Choirat, C., Koutrakis, P., & Lyapustin, A. (2019). Assessing NO2 concentration and model uncertainty with high spatiotemporal resolution across the contiguous United States using ensemble model averaging. Environmental science & technology, 54(3), 1372-1384.
Dons, E., Laeremans, M., Orjuela, J. P., Avila-Palencia, I., Carrasco-Turigas, G., Cole-Hunter, T., Anaya-Boig, E., Standaert, A., De Boever, P., & Nawrot, T. (2017). Wearable sensors for personal monitoring and estimation of inhaled traffic-related air pollution: evaluation of methods. Environmental science & technology, 51(3), 1859-1867.
Fan, J., Wang, X., Zhang, F., Ma, X., & Wu, L. (2020). Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data. Journal of Cleaner Production, 248, 119264.
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and robust automated machine learning. Advances in neural information processing systems, 28.
García, M. V., & Aznarte, J. L. (2020). Shapley additive explanations for NO2 forecasting. Ecological Informatics, 56, 101039.
Gu, J., Yang, B., Brauer, M., & Zhang, K. M. (2021). Enhancing the evaluation and interpretability of data-driven air quality models. Atmospheric Environment, 246, 118125.
Guo, B., Chen, F., Deng, Y., Zhang, H., Qiao, X., Qiao, Z., Ji, K., Zeng, J., Luo, B., & Zhang, W. (2018). Using rush hour and daytime exposure indicators to estimate the short-term mortality effects of air pollution: A case study in the Sichuan Basin, China. Environmental Pollution, 242, 1291-1298. https://www.sciencedirect.com/science/article/pii/S0269749118319250?via%3Dihub
Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., & Zhang, X. (2011). Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research, 11(2), 128-139.
He, G., Pan, Y., & Tanaka, T. (2020). The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nature sustainability, 3(12), 1005-1011.
Hill, A. C. (1971). Vegetation: a sink for atmospheric pollutants. Journal of the Air Pollution Control Association, 21(6), 341-346.
Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561-7578.
Hsu, C. Y., Xie, H. X., Wong, P. Y., Chen, Y. C., Chen, P. C., & Wu, C. D. (2022). A mixed spatial prediction model in estimating spatiotemporal variations in benzene concentrations in Taiwan. Chemosphere, 301, 134758.
Huangfu, P., & Atkinson, R. (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment international, 144, 105998. https://www.sciencedirect.com/science/article/pii/S016041202031953X?via%3Dihub
Jenkin, M. E., & Clemitshaw, K. C. (2000). Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment, 34(16), 2499-2527.
Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., Morrison, J., & Giovis, C. (2005). A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Science & Environmental Epidemiology, 15(2), 185-204.
Jerrett, M., Burnett, R. T., Kanaroglou, P., Eyles, J., Finkelstein, N., Giovis, C., & Brook, J. R. (2001). A GIS–environmental justice analysis of particulate air pollution in Hamilton, Canada. Environment and Planning A, 33(6), 955-973.
Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental pollution, 151(2), 362-367.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
Kendrick, C. M., Koonce, P., & George, L. A. (2015). Diurnal and seasonal variations of NO, NO2 and PM2. 5 mass as a function of traffic volumes alongside an urban arterial. Atmospheric Environment, 122, 133-141. https://www.sciencedirect.com/science/article/pii/S1352231015303605
Kerckhoffs, J., Wang, M., Meliefste, K., Malmqvist, E., Fischer, P., Janssen, N. A., Beelen, R., & Hoek, G. (2015). A national fine spatial scale land-use regression model for ozone. Environmental research, 140, 440-448.
Kingham, S., Sabel, C. E., & Bartie, P. (2011). The impact of the ‘school run’on road traffic accidents: A spatio-temporal analysis. Journal of transport geography, 19(4), 705-711.
Lamsal, L., Martin, R., Van Donkelaar, A., Steinbacher, M., Celarier, E., Bucsela, E., Dunlea, E., & Pinto, J. (2008). Ground‐level nitrogen dioxide concentrations inferred from the satellite‐borne Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 113(D16).
Lane, C. N. (2003). Acid rain: overview and abstracts.
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., & Chan, C. C. (2014). Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Science of The Total Environment, 472, 1163-1171. https://www.sciencedirect.com/science/article/pii/S0048969713013478?via%3Dihub
Liu, C., Henderson, B. H., Wang, D., Yang, X., & Peng, Z. r. (2016). A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2. 5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Science of The Total Environment, 565, 607-615.
Liu, W. T., Ma, C. M., Liu, I. J., Han, B. C., Chuang, H. C., & Chuang, K. J. (2015). Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan. International journal of hygiene and environmental health, 218(3), 319-323.
Lu, M., Schmitz, O., de Hoogh, K., Kai, Q., & Karssenberg, D. (2020). Evaluation of different methods and data sources to optimise modelling of NO2 at a global scale. Environment international, 142, 105856. https://www.sciencedirect.com/science/article/pii/S0160412020318110?via%3Dihub
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
Ma, X., Longley, I., Gao, J., & Salmond, J. (2020). Assessing schoolchildren's exposure to air pollution during the daily commute-A systematic review. Science of The Total Environment, 737, 140389.
Madakkatel, I., Zhou, A., McDonnell, M. D., & Hyppönen, E. (2021). Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study. Scientific reports, 11(1), 22997. https://www.nature.com/articles/s41598-021-02476-9.pdf
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, 14.
Pan, W. C., Wu, C. D., Chen, M. J., Huang, Y. T., Chen, C. J., Su, H. J., & Yang, H. I. (2016). Fine particle pollution, alanine transaminase, and liver cancer: a Taiwanese prospective cohort study (REVEAL-HBV). Journal of the National Cancer Institute, 108(3), djv341.
Ren, X., Mi, Z., & Georgopoulos, P. G. (2020). Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environment international, 142, 105827.
Rivas, I., Donaire‐Gonzalez, D., Bouso, L., Esnaola, M., Pandolfi, M., De Castro, M., Viana, M., Àlvarez‐Pedrerol, M., Nieuwenhuijsen, M., & Alastuey, A. (2016). Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in B arcelona. Indoor air, 26(3), 391-402.
Rowat, S. C. (1999). Incinerator toxic emissions: a brief summary of human health effects with a note on regulatory control. Medical hypotheses, 52(5), 389-396.
Shekarrizfard, M., Faghih-Imani, A., & Hatzopoulou, M. (2016). An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location. Environmental Research, 147, 435-444. https://www.sciencedirect.com/science/article/pii/S0013935116300809?via%3Dihub
Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., De Hoogh, K., De'Donato, F., Gariazzo, C., Lyapustin, A., Michelozzi, P., & Renzi, M. (2019). Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environment international, 124, 170-179.
Steinle, S., Reis, S., Sabel, C. E., Semple, S., Twigg, M. M., Braban, C. F., Leeson, S. R., Heal, M. R., Harrison, D., & Lin, C. (2015). Personal exposure monitoring of PM2. 5 in indoor and outdoor microenvironments. Science of The Total Environment, 508, 383-394.
Stirnberg, R., Cermak, J., Kotthaus, S., Haeffelin, M., Andersen, H., Fuchs, J., Kim, M., Petit, J. E., & Favez, O. (2021). Meteorology-driven variability of air pollution (PM 1) revealed with explainable machine learning. Atmospheric Chemistry and Physics, 21(5), 3919-3948.
Thind, P. S., Sareen, A., Singh, D. D., Singh, S., & John, S. (2021). Compromising situation of India’s bio-medical waste incineration units during pandemic outbreak of COVID-19: Associated environmental-health impacts and mitigation measures. Environmental Pollution, 276, 116621.
Thongthammachart, T., Araki, S., Shimadera, H., Matsuo, T., & Kondo, A. (2022). Incorporating Light Gradient Boosting Machine to land use regression model for estimating NO2 and PM2. 5 levels in Kansai region, Japan. Environmental Modelling & Software, 155, 105447.
Tsai, W. T., & Lin, Y. Q. (2021). Trend analysis of air quality index (AQI) and greenhouse gas (GHG) emissions in Taiwan and their regulatory countermeasures. Environments, 8(4), 29.
Venter, Z. S., Aunan, K., Chowdhury, S., & Lelieveld, J. (2020). COVID-19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences, 117(32), 18984-18990.
Wei, J., Li, Z., Pinker, R. T., Wang, J., Sun, L., Xue, W., Li, R., & Cribb, M. (2021). Himawari-8-derived diurnal variations in ground-level PM 2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM). Atmospheric chemistry and physics, 21(10), 7863-7880.
Weissert, L., Salmond, J., Miskell, G., Alavi-Shoshtari, M., & Williams, D. (2018). Development of a microscale land use regression model for predicting NO2 concentrations at a heavy trafficked suburban area in Auckland, NZ. Science of The Total Environment, 619, 112-119.
WHO. (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259. https://www.sciencedirect.com/science/article/pii/S0893608005800231
Wong, P. Y., Su, H. J., Lee, H. Y., Chen, Y. C., Hsiao, Y. P., Huang, J. W., Teo, T. A., Wu, C. D., & Spengler, J. D. (2021). Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan. Journal of Cleaner Production, 317, 128411.
Wu, C. D., Chen, Y. C., Pan, W. C., Zeng, Y. T., Chen, M. J., Guo, Y. L., & Lung, S. C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2. 5 spatial-temporal variability. Environmental pollution, 224, 148-157. https://www.sciencedirect.com/science/article/pii/S0269749116314063?via%3Dihub
Wu, C. D., Zeng, Y. T., & Lung, S. C. C. (2018). A hybrid kriging/land-use regression model to assess PM2. 5 spatial-temporal variability. Science of The Total Environment, 645, 1456-1464. https://www.sciencedirect.com/science/article/pii/S0048969718325592?via%3Dihub
Yoo, J. M., Lee, Y. R., Kim, D., Jeong, M. J., Stockwell, W. R., Kundu, P. K., Oh, S. M., Shin, D. B., & Lee, S. J. (2014). New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmospheric Environment, 82, 226-237. https://www.sciencedirect.com/science/article/pii/S1352231013007759
Zhan, Y., Luo, Y., Deng, X., Chen, H., Grieneisen, M. L., Shen, X., Zhu, L., & Zhang, M. (2017). Spatiotemporal prediction of continuous daily PM2. 5 concentrations across China using a spatially explicit machine learning algorithm. Atmospheric Environment, 155, 129-139.
Zhan, Y., Luo, Y., Deng, X., Zhang, K., Zhang, M., Grieneisen, M. L., & Di, B. (2018). Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environmental science & technology, 52(7), 4180-4189.
Zhang, K., & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic. Science of The Total Environment, 450, 307-316.