| 研究生: |
張昱琳 Chang, Yu-Lin |
|---|---|
| 論文名稱: |
真空與大氣轉換負載下真空腔體之有限元素分析 Finite Element Analysis of the Vacuum Chamber under Vacuum and Atmospheric Conversion Load |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 腔體 、鋁合金 、真空 、有限元素分析 、鎂合金 |
| 外文關鍵詞: | 6061-T6 aluminum alloy, vacuum chamber, Finite Element ANSYS Analysis, magnesium alloy, copper alloy |
| 相關次數: | 點閱:161 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在給予材料性質、應力-應變關係、模型、網格、邊界條件及負載條件後,本文使用有限元素ANSYS-Workbench軟體分析真空腔體在真空與大氣轉換負載下的力學行為。在材料方面則選擇三種不同材料來進行真空腔體的模擬分析,分別為鎂合金、鋁合金、銅合金,進行分析為從0到40秒鐘的抽氣變化,使真空腔體處於一個真空度為0.101325 MPa的狀態下進行模擬分析。分析結果顯示,以此三種合金材料為真空腔體的材料皆是相當安全的狀態。其分析結果顯示,6061-T6鋁合金真空腔體在靠近抽氣端的位置有最大的變形量為0.038072 mm,最大的等效應力量為26.61 MPa,而最大的等效應變量為0.0004232,至於對應降伏應力的安全係數為4.1338,其相關的數值顯示,真空腔體仍是相當安全的狀態。其他兩種合金材料分析結果顯示,對應降伏應力安全係數非常接近6061-T6鋁合金的安全係數,但由於銅合金重量較其他合金重,而鎂合金會與植入的離子元素產生化學作用,因此真空腔體則以6061-T6鋁合金來製作為最佳選擇。
After giving material properties, stress-strain relationships, models, meshes, boundary and load conditions. The finite element ANSYS-Workbench software is used to analyze the mechanical behavior of the vacuum chamber under the conversion load of vacuum and atmosphere. The different types of material are selected for the simulation analysis of the vacuum chamber, which are the magnesium alloy, the 6061-T6 aluminum alloy and the copper alloy. The analysis is the change of the pumping from 0 to 40 seconds. The vacuum chamber is analyzed in a state with a vacuum of 0.101325 MPa for simulation analysis. The analysis results show that the three alloy materials used as the material of the vacuum chamber are all in a fairly safe state. Further analysis shows that the 6061-T6 aluminum alloy vacuum chamber has a maximum deformation of 0.038072 mm near the suction end. The maximum equivalent stress is 26.61 MPa, and the largest equivalent strain is 0.0004232, and the safety factor corresponding to the yield stress is 4.1338, the related value shows that the vacuum chamber is still in a fairly safe state. The analysis results of the other two alloy materials show that the corresponding yield stress safety factor is very close to that of 6061-T6 aluminum alloy. However, because copper alloys are heavier than other alloys, and magnesium alloys have chemical interactions with implanted ion elements, therefore, the vacuum chamber made of 6061-T6 aluminum alloy is the best choice.
1. S. Dushman, “Scientific Foundation of Vacuum Technique”, Wiley, New York (1949).
2. H. F. Dylla,” CERN Accelerator School”, Spain, May 16-24 (2006).
3. 鄭廷訓,“渦輪分子真空幫浦的葉片設計”,國立屏東科技大學論文(2004)。
4. J. F. O'Hanlon, “A User's Guide to Vacuum Technology”, Wiley, New York (1989).
5. H. Akimichi, T. Tanaka, K. Takeuchi and Y. Tuzi, “Development of a New Ionization Gauge with Bessel Box Type Energy Analyzer”, Vacuum, Vol. 46, Is. 8-10, pp. 749-752 (1995).
6. F. Watanabe, “Hysteresis of electron-stimulated desorption in an ion spectroscopy gauge”, Vol 47, Issues 6–8, Pages 583-586 (1996).
7. J.C. Helmer, “History and development of the uhv Helmer gauge as an analytic instrument”, Vol 51, Issue 1, Pages 7-10 (1998).
8. 劉文海,“鋁合金淺力產品與前景分析”,產業報告,金屬工業研究發展中心出版(2004)。
9. 楊佳螢,“鋁合金超高真空系統之研究”,真空科技,第21卷,3&4期,39-43頁(2008)。
10. 李志強,“5083鋁合金精密鑄造工藝研究”,輕合金加工技術,第7期,25-28頁(2019)。
11. 陳芙蓉,“7075鋁合金的研究現狀”,機械製造文摘-焊接分冊,第1期,1-7頁(2019)。
12. 吳灝展,“6系列與7系列鍛造用鋁合金之機械性質及微結構特性之探討”,國立臺灣大學碩士論文(2013)。
13. J. E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International (1984).
14. 黃振賢,“金屬熱處理”,台北︰文京出版社(1985)。
15. Benvenuti, “Extreme high vacuum technology for particle", 19th IEEE Particle Accelerator, Chicago (2001).
16. ANSYS, “ANSYS User’s Manual Revision 8.0”, ANSYS Inc., Canonsburg, Pennsylvania (2004).