| 研究生: |
紀承佑 Chi, Cheng-Yu |
|---|---|
| 論文名稱: |
鋁摻雜氧化鋅(AZO)系氣體感測器之研製 Fabrication of Aluminum-Doped Zinc Oxide (AZO) Based Gas Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 氣體感測器 、氧化鋁鋅 、鈀 、鉑 、金奈米顆粒 、溢出效應 |
| 外文關鍵詞: | gas sensor, Aluminum-doped zinc oxide, Pd, Pt, Au nanoparticles, spillover effect |
| 相關次數: | 點閱:151 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業科技的發展,人們的日常生活充斥著越來越多的工業產品,在外在或室內環境中,皆有可能釋放出揮發性有機混合氣體,而大部分暴露在人們周遭的揮發有機氣體,當濃度達到一定程度時,會對人體健康造成傷害。因此,氣體感測器也漸漸地成為人們關注的焦點。現今,金屬氧化物半導體式氣體感測器已引起人們濃厚興趣,由於它具簡單操作、低成本、製作一致性與即時應用的高可靠度。另外,對氧化物半導體來說,具有高靈敏度、快的偵測速度且良好選擇性是三項最重要的特性。氧化鋁鋅氣體感測器具有環境友善、低成本、良好一致性、好的選擇性、高靈敏度、高導電度等等優點。因此,本論文將以氧化鋁鋅作為氣體感測之材料,並藉由X光薄膜繞射分析儀、原子力顯微鏡、掃描式電子顯微鏡、能量分散式光譜儀、傅立葉轉換紅外光譜儀來分析氧化鋁鋅薄膜之結構、表面型態、元素組成和鍵結。
在元件製程方面,首先,吾人利用熱蒸鍍法製作鉻/鉑的指叉式電極於藍寶石基板上,接著以射頻磁控濺鍍法製備氧化鋁鋅感測薄膜,最後以快速熱退火增加氧化鋁鋅的結晶性,並針對各種不同濃度的氣體進行氣體感測分析。
其次,吾人以不同催化金屬結合氧化鋁鋅感測薄膜,改善金屬氧化物系感測器之選擇性問題。吾人以鈀和鉑金屬薄膜催化氫氣與氨氣,實驗結果,經過修飾後的氧化鋁鋅薄膜分別顯示對氫氣與氨氣均有良好的感測能力。
最後,吾人將金奈米顆粒以濕式沉積於氧化鋁鋅薄膜結構上。金奈米顆粒對甲醛是一個良好的催化劑並形成更多吸附座,有著更大的表面積,促進氣體在材料表面傳送和反應,因此,添加金奈米粒子確實提升了靈敏度,使得甲醛感測性能大幅改進。
With the development of industry, people's daily life is full of more and more industrial products, which can release volatile organic compounds (VOCs) in indoor air. Most of the VOCs, which are exposed to people for some time, pose a threat to human health when the concentration reaches a certain degree. Therefore, people also gradually focused on gas sensors. Nowadays, gas sensors based on metal oxide semiconductor materials have attracted increasing interests, due to their simple implementation, low cost, high compatibility with semiconductor processing and good reliability for real-time applications. Furthermore, it is well known that high sensitivity, rapid response, and excellent selectivity are three most important properties for oxide semiconductor gas sensors. Aluminum-doped zinc oxide (AZO) based gas sensors have its merits, such as environmental friendliness, low cost, good compatibility, excellent selectivity, high sensitivity and so on. Consequently, Aluminum-doped zinc oxide (AZO) was employed as gas sensors in this study and analyzed its compositions, structures and atomic bonding by x-ray diffractometer (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and fourier transform infrared spectroscopy (FT-IR).
First, the Cr/Pt interdigitated electrodes were fabricated on a sapphire substrate by thermal evaporation. Then, the AZO sensing layer was deposited by radio-frequency (RF) sputtering. Finally, the crystalline of AZO was improved by rapid thermal annealing (RTA) and gas sensing properties were discussed.
However, the normal nickel oxide gas sensor had bad selectivity on the different gas concentration. So that, we utilized different catalytic metal which could induce selectivity to composite AZO film. Then, palladium and platinum catalytic metal film by thermal evaporation could effectively catalytic hydrogen and ammonia gas. The result, both hydrogen and ammonia gas had excessive sensing property.
Finally, Au nanoparticles were deposited on the AZO sensing film structure. Au nanoparticles were excellent catalyst for formaldehyde and formed more active sites and structures with large surface area that facilitated gas transmission and reaction on the surface of the materials. Thus, the addition of Au nanoparticles actually enhances the sensitivity and improves formaldehyde sensing property.
[1] X. Xing, Y. Li, D Deng, N. Chen, X. Liu, X. Xiao and Y. Wang, “Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application,” RSC Adv., vol. 6, pp. 101304-101312, 2016.
[2] C. Jia, S. Batterman and C. Godwin, “VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers,” Atmos. Environ., vol. 42, pp. 2083-2100, 2008.
[3] M. Leidinger, T. Sauerwald, T. Conrad, W. Reimringer, G. Ventura and A. Schütze, “Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors,” Procedia Eng., vol. 87, pp. 1449-1452, 2014.
[4] M. Ni, M.K.H. Leung, D.Y.C. Leung and L.K. Sumath, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renewable Sustainable Energy Rev., vol. 11, pp. 401-425, 2007.
[5] D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, J.M. Friedrich and F.C. Walsh, “Reversible storage of molecular hydrogen by sorption into multilayered TiO2 Nanotubes,” J. Phys. Chem. B, vol. 109, pp. 19422-19427, 2005.
[6] J. Moon, H. P. Hedman, M. Kemell, A. Tuominen and R. Punkkinen, “Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate,” Sens. Actuators, B, vol. 222, pp. 190-197, 2016.
[7] C. Malins, A. Doyle, B.D. Mac Craith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, and I. Babusik, “Personal ammonia sensor for industrial environments,” J. Environ. Monit., vol. 1, pp. 417-422, 1999.
[8] W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sens. Actuators, B, vol. 110, pp. 252-259, 2005.
[9] D. Ponnusamy and S. Madanagurusamy, “Nanostructured ZnO Films for Room Temperature Ammonia Sensing,” Journal of Electronic Materials, vol. 43, pp. 3211-3216, 2014.
[10] T. Celik, “Fast and Efficient Method for Fire Detection Using Image Processing,” ETRI Journal, vol. 32, pp. 881-890, 2010.
[11] J. Flueckiger, F. K. Ko, and K. C. Cheung, “Microfabricated Formaldehyde Gas Sensors,” Sensors, vol. 9, pp. 9196-9215, 2009.
[12] N. J. Choi, H. K. Lee, S. E. Moon, W. S. Yang, and J. Kim, “Volatile Organic Compound Gas Sensor Based on Aluminum-Doped Zinc Oxide with Nanoparticle,” J Nanosci Nanotechnol., vol. 13, pp. 5481–5484, 2013.
[13] L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang and F. Gao, “Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method,” J. Mater. Sci Mater. El., vol. 19, pp. 868-874, 2008.
[14] S. Cho, D. H. Kim, B. S. Lee, J. Jung, W. R. Yu, S. H. Hong and S. Lee, “Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process,” Sens. Actuat. B Chem., vol. 162, pp. 300-306, 2012.
[15] S.K. Lim, S.-H. Hwang, D. Chang and S. Kim, “Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor,” Sens. Actuat. B Chem., vol. 149, pp. 28-33, 2010.
[16] Hafeezullah, Z.H. Yamani, J. Iqbal, A. Qurashi and A. Hakeem, “Rapid sonochemical synthesis of In2O3 nanoparticles their doping optical, electrical and hydrogen gas sensing properties,” J. Alloys Compd., vol. 616, pp. 76-80, 2014.
[17] Y. Wang, B. Liu, D. Cai, H. Li, Y. Liu, D. Wang, L. Wang, Q. Li and T. Wang, “Room temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes,” Sens. Actuat. B Chem., vol. 201, pp. 351-359, 2014.
[18] S. T. Navale, G. D. Khuspe, M. A. Chougule and V. B. Patil, “Polypyrrole, α-Fe2O3 and their hybrid nanocomposite sensor: an impedance spectroscopy study,” Org. Electron., vol. 15, pp. 2159-2167, 2014.
[19] B. Geng, F. Zhan, C. Fang and N. Yu, “A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room temperature gas sensing properties,” J. Mater. Chem., vol. 18, pp. 4977-4984, 2008.
[20] E. Sennik, N. Kilinc and Z.Z. Ozturk, “Electrical and VOC sensing properties of anatase and rutile TiO2 nanotubes,” J. Alloys Compd., vol. 616, pp. 89-96, 2014.
[21] T. Xiao, X.-Y. Wang, Z.-H. Zhao, L. Li, L. Zhang, H.-C. Yao, J.-S. Wang and Z.-J. Li, “Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus,” Sens. Actuat. B Chem., vol. 199, pp. 210-219, 2014.
[22] H. Ding, H. Ge, and J. Liu, “High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors,” Sens. Actuat. B Chem., vol. 107, pp. 749-755, 2005.
[23] F. Fang, L. Bai, D. Song, H. Yang, X. Sun, H. Sun and J. Zhu, “Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance,” Sensors, vol. 15 pp. 20086-20096, 2015.
[24] Y. S. Li, J. Xu, J. F. Chao, D. Chen, S. Ouyang, J. H. Ye and G. Z. Shen, “High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties,” J. Mater. Chem., vol. 21 pp. 12852-12857, 2011.
[25] L. Han, D.J. Wang, J.B. Cui, L.P. Chen, T.F. Jiang and Y.H. Lin, “Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature,” J. Mater. Chem., vol. 22 pp. 12915-12920, 2012.
[26] H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umarcd and J. H. Lee, “Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures,” Nanoscale, vol. 5 pp. 7066-7073, 2013.
[27] J. Deng, J. Ma, L. Mei, Y. Tang, Y. Chen, T. Lv, Z. Xu and T. Wang, “Porous a-Fe2O3 nanosphere-based H2S sensor with fast response, high selectivity and enhanced sensitivity,” J. Mater. Chem. A, vol. 1 pp. 12400-12403, 2013.
[28] Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen and J. M. Ma, “Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature,” Nanoscale, vol. 5 pp. 10916-10926, 2013.
[29] H. Yanagida, “Intelligent Materials-A New Frontier,” Angew. Chem., vol. 100 pp. 1443-1446, 1988.
[30] S. Mridha and D. Basak, “Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications,” Semicond. Sci. Technol., vol. 21 pp. 928-932, 2006.
[31] D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, A. Devi and R. A. Fischer, “Co3O4/ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications,” ACS Appl. Mater. Interfaces, vol. 4 pp. 928-934, 2012.
[32] J. Cao, Z. Wang, R. Wang, S. Liu, T. Fei, L. Wang and T. Zhang, “Synthesis of core–shell α-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties,” J. Mater. Chem. A, vol. 3 pp. 5635-5641, 2015.
[33] D. W. Zhang, X. F. Wu, N. Han and Y. F. Chen, “Chemical vapor deposition preparation of nanostructured ZnO particles and their gas-sensing properties,” J. Nanopart. Res., vol. 15 pp. 1580-1589, 2013.
[34] W. H. Li, X. F. Wu, N. Han, J. Y. Chen, X. H. Qian, Y. Z. Deng, W. X. Tang and Y. F. Chen, “MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance,” Sens. Actuators, B, vol. 225 pp. 158-166, 2016.
[35] N. S. Ramgir, M. Kaur, P. K. Sharma, N. Datta, S. Kailasaganapathi, S. Bhattacharya, A. K. Debnath, D. K. Aswal and S. K. Gupta, “Ethanol sensing properties of pure and Au modified ZnO nanowires,” Sens. Actuators, B, vol. 187 pp. 313-318, 2013.
[36] R. Yoo, S. Cho, M. J. Song and W. Lee, “Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant,” Sens. Actuators, B, vol. 221 pp. 217-223, 2015.
[37] C. J. Dong, X. Liu, B. Q. Hang, S. J. Deng, X. C. Xiao and Y. D. Wang, “Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor,” Sens. Actuators, B, vol. 224 pp. 193-200, 2016.
[38] C. S. Lee, I. D. Kim and J. H. Lee, “Selective and sensitive detection of trimethylamine using ZnO-In2O3 composite nanofibers,” Sens. Actuators, B, vol. 181 pp. 463-470, 2013.
[39] S. J. Deng, N. Chen, D. Y. Deng, Y. X. Li, X. X. Xing and Y. D. Wang, “Meso- and macroporous coral-like Co3O4 for VOCs gas sensor,” Ceram. Int., vol. 41 pp. 11004-11012, 2015.
[40] D. Hu, X. Liu, S. J. Deng, Y. J. Liu, Z. P. Feng, B. Q. Han, Y. Wang and Y. D. Wang, “Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations,” Phys. E, vol. 61 pp. 14-22, 2014.
[41] Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga and K. Morita, “Effects of dopants and hydrogen on the electrical conductivity of ZnO,” J. Eur. Ceram. Soc., vol. 24 pp. 139-146, 2004.
[42] R. Deng, Y. M. Zou, Z. Chen, G. S. Jiang and H. G. Tang, “Growth of single-crystalline AlZnO nanorods by simple vapor deposition method,” Mater. Lett., vol. 61 pp. 3582-3584, 2007.
[43] A. Katoch, S.-W. Choi, G.-J. Sun, H. W. Kim and S. S. Kim, “Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber,” Nanotechnology, vol. 25 pp. 175501-175507, 2014.
[44] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang and Y. Zhang, “Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature,” J. Mater. Chem., vol. 22 pp. 20038-20047, 2012.
[45] D. Chen, J. Xu, Z. Xie and G. Z. Shen, “Nanowires Assembled SnO2 Nanopolyhedrons with Enhanced Gas Sensing Properties,” ACS Appl. Mater. Interfaces, vol. 3 pp. 2112-2117, 2011.
[46] X. L. Zhang, F. Z. Huang, A. Nattestad, K. Wang, D. C. Fu, A. Mishra, P. Bauerle, U. Bach and Y. B. Cheng, “Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles,” Chem. Commun., vol. 47 pp. 4808-4810, 2011.
[47] Y. Ren, W. K. Chim, S. Y. Chiam, J. Q. Huang, C. Pi and J. S. Pan, “Formation of Nickel Oxide Nanotubes with Uniform Wall Thickness by Low-Temperature Thermal Oxidation Through Understanding the Limiting Effect of Vacancy Diffusion and the Kirkendall Phenomenon,” Adv. Funct. Mater., vol. 20 pp. 3336-3342, 2010.
[48] B. Liu, H. Q. Yang, H. Zhao, L. J. An, L. H. Zhang, R. Y. Shi, L. Wang, L. Bao and Y. Chen, “Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals,” Sens. Actuators, B, vol. 156 pp. 251-262, 2011.
[49] L.A. Patil, M.D. Shinde, A.R. Bari and V.V. Deo, “Highly sensitive and quickly responding ultrasonically sprayed nanostructured SnO2 thin films for hydrogen gas sensing,” Sens. Actuators, B, vol. 143 pp. 270-277, 2009.
[50] L. Zhang, J. Zhao, J. Zheng, L. Li and Z. Zhu, “Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties,” Appl. Surf. Sci., vol. 258 pp. 711-718, 2011.
[51] L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li and Z. Zhu, “High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method,” Sens. Actuat. B Chem., vol. 160 pp. 364-370, 2011.
[52] F. Tian, Y. Liu and K. Guo, “Au nanoparticle modified flower-like ZnO structures with their enhanced properties for gas sensing,” Mater. Sci. Semicon. Process., vol. 21 pp. 140-145, 2014.
[53] P. Rai, J. W. Yoon, H. M. Jeong, S. J. Hwang, C. H. Kwak and J. H. Lee, “Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications,” Nanoscale, vol. 6 pp. 8292-8299, 2014.
[54] Y. Lin, W. Wei, Y. Li, F. Li, J. Zhou, D. Sun, Y. Chen and S. Ruan, “Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties,” J. Alloys Compd., vol. 651 pp. 690-698, 2015.
[55] Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu and Q.J. Liu, “A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite,” Sens. Actuat. B Chem., vol. 190 pp. 171-176, 2014.
[56] Y. Chu, D. Mallin, M. Amani, M.J. Platek and O.J. Gregory, “Detection of peroxides using Pd/SnO2 nanocomposite catalysts,” Sens. Actuat. B Chem., vol. 197 pp. 376-384, 2014.
[57] H.Y. Lai and C.H. Chen, “Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles,” J. Mater. Chem., vol. 22 pp. 13204-13208, 2012.
[58] X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu and S. Wang, “3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors,” J. Mater. Chem., vol. 21 pp. 349-356, 2011.
[59] W.C. Liu, H.J. Pan, H.I. Chen, K.W. Lin, S.Y. Cheng, and K.H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48 pp. 1938-1944, 2001.
[60] T. Y. Chen et al., “Hydrogen-sensing characteristics of a Pd/GaN Schottky diode with a simple surface roughness approach,” IEEE Trans. Electron Devices, vol. 58 pp. 4079-4086, 2011.
[61] C.M. Chang, M.H. Hon and I.C. Leu, “Outstanding H2 Sensing Performance of Pd Nanoparticle-Decorated ZnO Nanorod Arrays and the Temperature-Dependent Sensing Mechanisms,” ACS Appl. Mater. Interfaces, vol. 5 pp. 135-143, 2013.
[62] Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li and T. Wang, “High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide,” J. Mater. Chem. A, vol. 3 pp. 1317-1324, 2015.
[63] M. Yamauchi, H. Kobayashi and H. Kitagawa, “Hydrogen Storage Mediated by Pd and Pt Nanoparticles,” ChemPhysChem, vol. 10 pp. 2566-2576, 2009.
[64] M. Faisal Bin Alam, D.T. Phan and G.S. Chung, “Palladium nanocubes decorated on a one-dimensional ZnO nanorods array for use as a hydrogen gas sensor,” Mater. Lett., vol. 156 pp. 113-117, 2015.
[65] Y. Kimura, S. Kumura, R. Kojima, M. Bitoh, M. Abe and M. Niwano, “Micro-scaled hydrogen gas sensors with patterned anodic titanium oxide nanotube film,” Sens. Actuators B, vol. 177 pp. 1156-1160, 2013.
[66] E. Şennik, U. Soysal and Z.Z. Öztürk, “Pd loaded spider-web TiO2 nanowires: fabrication, characterization and gas sensing properties,” Sens. Actuators B, vol. 199 pp. 424-432, 2014.
[67] Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park and J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology, vol. 19 p. 095508, 2008.
[68] Z. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312 pp. 242-246, 2006.
[69] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today, vol. 10 pp. 40-48, 2007.
[70] Z. Zang, A. Nakamura and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett., vol. 92 pp. 188-191, 2013.
[71] Z. Zang, A. Nakamura and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express, vol. 21 pp. 11448-11456, 2013.
[72] N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, and M. Willander, “ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method,” J. Appl. Phys., vol. 108 p. 043103, 2010.
[73] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu and M. Kawasaki, “Blue Light-Emitting Diode Based on ZnO,” Jpn. J. Appl. Phys., vol. 44 pp. L643-L645, 2005.
[74] J. L. Wang, T. Y. Hsieh, P. Y. Yang, C. C. Hwang, D. C. Shye and I. C. Lee, “Oxygen annealing effect on field-emission characteristics of hydrothermally synthesized Al-doped ZnO nanowires,” Surf. Coat Tech., vol. 231 pp. 423-427, 2013.
[75] Q. Zhao, H.Z. Zhang, Y.W. Zhu, S.Q. Feng, X.C. Sun, J. Xu and D.P. Yu, “Morphological effects on the field emission of ZnO nanorod arrays,” Appl. Phys. Lett., vol. 86 p. 203115, 2005.
[76] N. S. Ramgir, I. S. Mulla, K. Vijayamohanan, D. J. Late, A. B. Bhise, M. A. More and D. S. Joag, “Ultralow threshold field emission from a single multipod structure of ZnO,” Appl. Phys. Lett., vol. 88 p. 042107, 2006.
[77] M.H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa and M. Rusop, “Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times,” Sens. Actuat. B Chem., vol. 195 pp. 609-622, 2014.
[78] Z. Liu, T. Fan, D. Zhang, X. Gong and J. Xu, “Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates,” Sens. Actuat. B Chem., vol. 136 pp. 499-509, 2009.
[79] O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, A. N. Gruzintsev and A. N. Redkin, “Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature,” Sens. Actuat. B Chem., vol. 144 pp. 56-66, 2010.
[80] P. Hu, N. Han, D. Zhang, J.C. Ho and Y. Chen, “Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition,” Sens. Actuat. B Chem., vol. 169 pp. 74-80, 2012.
[81] J. Zhou, N.S. Xu and Z.L. Wang, “Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures,” Adv. Mater., vol. 18 pp. 2432-2435, 2006.
[82] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84 pp. 3654-3656, 2004.
[83] J. R. Huang, Y. J. Wu, C. P. Gu, M. H. Zhai, Y. F. Sun and J. H. Liu, “Fabrication and gas-sensing properties of hierarchically porous ZnO architectures,” Sens. Actuators, B, vol. 155 pp. 126-133, 2011.
[84] H.Y. Huang, P.C. Xu, D. Zheng, C.Z. Chen and X.X. Li, “Sulfuration–desulfuration reaction sensing effect of intrinsic ZnO nanowires for high-performance H2S detection,” J. Mater. Chem. A, vol. 3 pp. 6330-6339, 2015.
[85] L. Dejam, S.M. Elahi, H.H. Nazari, H. Elahi, S. Solaymani and A. Ghaderi, “Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing,” J. Mater. Sci.: Mater. Electron., vol. 27 pp. 685-696, 2016.
[86] S.H. Mousavi, T.S. Műller and P.W. de Oliveira, “The effects of the aluminium concentration on optical and electrical properties of AZO thin films as a transparent conductive layer,” J. Mater. Sci.: Mater. Electron., vol. 24 pp. 3338-3343, 2013.
[87] L. Huang, B. Li, H. Cao, W. Zu, N. Ren and H. Ding, “Influence of annealing temperature on formation and photoelectric properties of AZO nanosheet-coated FTO-based films,” J. Mater. Sci.: Mater. Electron., vol. 28 pp. 4706-4712, 2017.
[88] X. Liu, K. M. Pan, W. B. Li, D. Hu, S. Y. Liu and Y. D. Wang, “Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol–gel method under different heat treatments,” Ceram. Int., vol. 40 pp. 9931-9939, 2014.
[89] M. Hjiri, L. E. Mir, S. G. Leonardi, A. Pistone, L. Mavilia and G. Neri, “Al-doped ZnO for highly sensitive CO gas sensors,” Sens. Actuators, B, vol. 196 pp. 413-420, 2014.
[90] X. X. Xing, T. Chen, Y. X. Li, D. Y. Deng, X. C. Xiao and Y. D. Wang, “Flash synthesis of Al-doping macro-/nanoporous ZnO from self-sustained decomposition of Zn-based complex for superior gas-sensing application to n-butanol,” Sens. Actuators, B, vol. 237 pp. 90-98, 2016.
[91] M. Z. Jacobson, “Review of solutions to global warming, air pollution, and energy security,” Energy Environ. Sci., vol. 2 pp. 148-173, 2009.
[92] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt and R. Villafáfila-Robles, “A review of energy storage technologies for wind power applications,” Renewable Sustainable Energy Rev., vol. 16 pp. 2154-2171, 2012.
[93] R. Raja Singh, T.R. Chelliah and P. Agarwal, “Power electronics in hydro electric energy systems—a review,” Renewable Sustainable Energy Rev., vol. 32 pp. 944-959, 2014.
[94] A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science, vol. 285 pp. 692-698, 1999.
[95] M. Lenzen, “Current state of development of electricity-generating technologies: a literature review,” Energies, vol. 3 pp. 462-591, 2010.
[96] S. S. Kalanur, I. H. Yoo, Y. A. Lee and H. Seo, “Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications,” Sens. Actuat. B Chem., vol. 221 pp. 411-417, 2015.
[97] M.K. Kumar, A.L.M. Reddy and S. Ramaprabhu, “Exfoliated single-walled carbon nanotube-based hydrogen sensor,” Sens. Actuat. B Chem., vol. 130 pp. 653-660, 2008.
[98] S.N. Das, J.P. Kar, J.H. Choi, T.I. Lee, K.J. Moon and J.M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor,” J. Phys. Chem. C, vol. 114 pp. 1689-1693, 2010.
[99] T. C. Lin and B. R. Huang, “Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing,” Sens. Actuat. B Chem., vol. 162 pp. 108-113, 2012.
[100] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D. P. Anderson and G. G. Andersson, “Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films,” Int. J. Hydrogen Energy, vol. 38 pp. 12865-12877, 2013.
[101] S. K. Arya, S. Krishnan, H. Silva, S. Jean and S. Bhansali, “Advances in materials for room temperature hydrogen sensors,” Analyst, vol. 137 pp. 2743-2756, 2012.
[102] T. Hübert, L. Boon-Brett, G. Black and U. Banach, “Hydrogen sensors – A review,” Sens. Actuat. B Chem., vol. 157 pp. 329-352, 2011.
[103] N. H. Al-Hardan, M. J. Abdullah and A. Abdul Aziz, “Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films,” Int. J. Hydrogen Energy, vol. 35 pp. 4428-4434, 2010.
[104] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuat. B Chem., vol. 108 pp. 508-514, 2005.
[105] D. Shaposhnik, R. Pavelko, E. Llobet, F. Gispert-Guirado and X. Vilanova, “Hydrogen sensors on the basis of SnO2-TiO2 systems,” Procedia Eng., vol. 25 pp. 1133-1136, 2011.
[106] V. M. Jimenez, J. P. Espinos and A. R. Gonzalez-Elipe, “Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials,” Sens. Actuat. B Chem., vol. 61 pp. 23-32, 1999.
[107] K. S. Yoo, S. H. Park and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuat. B Chem., vol. 108 pp. 159-164, 2005.
[108] S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuat. B Chem., vol. 93 pp. 142-147, 2003.
[109] N. S. Baik, G. Sakai, N. Miura and N. Yamazoe, “Hydrothermally treated sol solution of tin oxide for thin-film gas sensor,” Sens. Actuat. B Chem., vol. 63 pp. 74-79, 2000.
[110] K. Lokesh, G. Kavitha, E. Manikandan, G. K. Mani, K. Kaviyarasu, J. B. B. Rayappan, R. Ladchumananandasivam, J. S. Aanand, M. Jayachandran and M. Maaza, “Effective Ammonia Detection Using n-ZnO/p-NiO Heterostructured Nanofibers,” IEEE Sens. J., vol. 16 pp. 2477-2483, 2016.
[111] D. D. Nguyen, D. V. Dang and D. C. Nguyen, “Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 6 p. 035006, 2015.
[112] L. A. Patil, L. S. Sonawane and D. G. Patil, “Room Temperature Ammonia Gas Sensing Using MnO2-Modified ZnO Thick Film Resistors,” Journal of Modern Physics, vol. 2 pp. 1215-1221, 2011.
[113] A.K. Yewale, K.B. Raulkar, A.S. Wadatkar and G.T. Lamdhade, “Application of metal oxide thick film as a NH3 gas sensor,” J. Electron. Devices, vol. 11 pp. 544-550, 2011.
[114] A. J. Kulandaisamy, J. R. Reddy, P. Srinivasan, K. J. Babu, G. K. Mani, P. Shankar and J. B. B. Rayappan, “Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping,” J. Alloys Compd., vol. 688 pp. 422-429, 2016.
[115] V.B. Raj, A.T. Nimal, Y. Parmar, M.U. Sharma, K. Sreenivas and V. Gupta, “Cross-sensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor,” Sens. Actuators B Chem., vol. 147 pp. 517-524, 2010.
[116] L. R. Narasimhan, W. Goodman, C. Kumar and N. Patel, “Correlation of Breath Ammonia with Blood Urea Nitro-gen and Creatine during Hemodialysis,” Proc. Natl. Acad. Sci., vol. 98 pp. 4617-4621, 2001.
[117] R. E. de la Hoz, D. P. Schueter and W. N. Rom, “Chronic Lung Disease Secondary to Ammonia Inhalation Injury: A Report on Three Cases,” Am. J. Ind. Med., vol. 29 pp. 209-214, 1996.
[118] C. M. Leung and C. L. Foo, “Mass Ammonia Inhalation Burns-Experience in the Management of 12 Patients,” Ann. Acad. Med. Singap., vol. 21 pp. 624-629, 1992.
[119] R. A. Michaels, “Emergency Planning and Acute Toxic Potency of Inhaled Ammonia,” Environ. Health Pers., vol. 107 pp. 617-627, 1999.
[120] L. G. Close, F. I. Catlin and A. M. Cohn, “Acute and Chronic Effects of Ammonia Burns on the Respiratory Track,” Archives of Otolaryngology, vol. 106 pp. 151-158, 1980.
[121] J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont and W. Winiwarter, “How a century of ammonia synthesis changed the world,” Nat. Geosci., vol. 1 pp. 636-639, 2008.
[122] C. Malins, A. Doyle, B.D. MacCraith, F. Kvasnik, M. Landl, P. Simon, et al., “Personal ammonia sensor for industrial environments,” J. Environ. Monit., vol. 1 pp. 417-422, 1999.
[123] Y. Alarie, “Dose–response analysis in animal studies: prediction of human responses,” Environ. Health Perspect., vol. 42 pp. 9-13, 1981.
[124] G. K. Mani and J. B. B. Rayappan, “Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films,” Appl. Surf. Sci., vol. 311 pp. 405-412, 2014.
[125] B. Timmer, W. Olthuis and A.V.N. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuators B Chem., vol. 107 pp. 666-677, 2005.
[126] R. C. Pawar, J. S. Shaikh, A. V. Moholkar, S. M. Pawar, J. H. Kim, J. Y. Patil, S. S. Suryavanshi and P. S. Patil, “Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gas sensing properties,” Sens. Actuators B Chem., vol. 151 pp. 212-218, 2010.
[127] T. Chen, Q. J. Liu, Z. L. Zhou and Y. D. Wang, “A high sensitivity gas sensor for formaldehyde based on CdO and In2O3 doped nanocrystalline SnO2,” Nanotechnology, vol. 19 p. 095506, 2008.
[128] Y. I. Korpan, M. V. Gonchar, A. A. Sibirny, C. Martelet, A. V. El’skaya, T. D. Gibson and A. P. Soldatkin, “Development of highly selective and stable potentiometric sensors for formaldehyde determination,” Biosens. Bioelectron., vol. 15 pp. 77-83, 2000.
[129] L. Feng, Y. J. Liu, X. D. Zhou and J. M. Hu, “The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers,” J. Colloid Interface Sci., vol. 284 pp. 378-382, 2005.
[130] I. Castro-Hurtado, J. Herrán, G. G. Mandayo and E. Castaño, “Studies of influence of structural properties and thickness of NiO thin films on formaldehyde detection,” Thin Solid Films, vol. 520 pp. 947-952, 2011.
[131] K.W. Zhou, X.L. Ji, N. Zhang and X.R. Zhang, “On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor,” Sens. Actuators B Chem., vol. 119 pp. 392-397, 2006.
[132] L. Zhang, C. Steinmaus, D.A. Eastmond, X.K. Xin and M.T. Smith, “Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms,” Mutation Research/ Reviews in Mutation Research., vol. 681 pp. 150-168, 2009.
[133] Y. Herschkovitz, I. Eshkenazi, C.E. Campbell and J. Rishpon, “An electrochemical biosensor for formaldehyde,” J. Electroanal. Chem., vol. 491 pp. 182-187, 2000.
[134] R. Knake, P. Jacquinot and P. C. Hauser, “Amperometric Detection of Gaseous Formaldehyde in the ppb Range,” Electroanalysis, vol. 13 pp. 631-634, 2001.
[135] L. Daza, S. Dassy and B. Delmon, “Chemical sensors based on SnO2 and WO3 for the detection of formaldehyde: cooperative effects,” Sens. Actuators B Chem., vol. 10 pp. 99-105, 1993.
[136] A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors,” Sens. Actuators B Chem., vol. 70 pp. 87-100, 2000.
[137] P. Rai, J.W. Yoon, H.M. Jeong, S.J. Hwang, C.H. Kwak and J.H. Lee, “Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications,” Nanoscale, vol. 6 pp. 8292-8299, 2014.
[138] T.I. Nasution, I. Nainggolan, S.D. Hutagalung, K.R. Ahmad and Z.A. Ahmad, “The sensing mechanism and detection of low concentration acetone using chitosan-based sensors,” Sens. Actuators B Chem., vol. 177 pp. 522-528, 2013.
[139] X.Z. Wang, S. Qiu, C.Z. He, G.X. Lu, W. Liu and J.R. Liu, “Synthesis of Au decorated SnO2 mesoporous spheres with enhanced gas sensing performance,” RSC Adv., vol. 3 pp. 19002-19008, 2013.
[140] X.J. Xu, H.T. Fan, Y.T. Liu, L.J. Wang and T. Zhang, “Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption,” Sens. Actuators B Chem., vol. 160 pp. 713-719, 2011.
[141] X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu and S. Wang, “3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors,” J. Mater. Chem., vol. 21 pp. 349-356, 2011.
[142] M. T. Hosseinnejad, M. Ghoranneviss, M. R. Hantehzadeh and E. Darabi, “Characterization and hydrogen gas sensing performance of Al-doped ZnO thin films synthesized by low energy plasma focus device,” J. Alloys Compd., vol. 689 pp. 740-750, 2016.
[143] S.K. Lim, S.H. Hwang, D. Chang and S. Kim, “Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor,” Sensors Actuators B Chem., vol. 149 pp. 28-33, 2010.
[144] Y. Shi et al., “Multi-junction joints network self-assembled with converging ZnO nanowires as multi-barrier gas sensor,” Sensors Actuators B Chem., vol. 177 pp. 1027-1034, 2013.
[145] C.S. Rout, M. Hegde, A. Govindaraj and C.N.R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18 p. 205504, 2007.
[146] M. Stankova, X. Vilanova, E. Llobel, J. Calderer, C. Bittencourt, J.J. Pireaux and X.Correig, “Influence of the annealing and operating temperatures on the gas-sensing properties of RF sputtered WO3 thin-film sensors,” Sensors Actuators B Chem., vol. 105 pp. 271-277, 2005.
[147] T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J.S. Wu, P. C. Chou and W. C. Liu, “Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration,” Sensors Actuators B Chem., vol. 221 pp. 491-498, 2015.
[148] T. Chen, Q.J. Liu, Z.L. Zhou and Y.D. Wang, “The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity,” Sensors Actuators B Chem., vol. 131 pp. 301-305, 2008.
[149] G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices. Boca Raton, FL, USA: CRC Press, p. 316, 2011.
[150] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO—Nanostructures, defects, and devices,” Mater. Today, vol. 10 pp. 40-48, 2007.
[151] M. Pal, S. Bera, S. Sarkar and S. Jana, “Influence of Al doping on microstructural, optical and photocatalytic properties of sol–gel based nanostructured zinc oxide films on glass,” RSC Adv., vol. 4 pp. 11552-11563, 2014.
[152] L. Rajan, P. Chinnamuthan, V. Krishnasamy and V. Sahula, “An Investigation on Electrical and Hydrogen Sensing Characteristics of RF Sputtered ZnO Thin-Film With Palladium Schottky Contacts,” IEEE Sens. J., vol. 17 pp. 14-21, 2017.
[153] Q.A. Drmosh and Z.H. Yamani, “Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles,” Ceram. Int., vol. 42 pp. 12378-12384, 2016.
[154] F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, P. Tang and D. Li, “Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods,” Sensors Actuators B Chem., vol. 241 pp. 895-903, 2017.
[155] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito and K. Kalantar-zadeh, “Characterization of ZnO Nanobelt-Based Gas Sensor for H2, NO2, and Hydrocarbon Sensing,” IEEE Sens. J., vol. 7 pp. 919-924, 2007.
[156] S. Wei, Y. Zhang and M. Zhou, “Formaldehyde sensing properties of ZnO-based hollow nanofibers,” Sensor Rev., vol. 34 pp. 327-334, 2014.
[157] S. Choopun, N. Hongsith, P. Mangkorntong and N. Mangkorntong, “Zinc oxide nanobelts by RF sputtering for ethanol sensor,” Physica E, vol. 39 pp. 53-56, 2007.
[158] C.C. Li, Z.F. Du, L.M. Li, H.C. Yu, Q. Wan and T.H. Wang, “Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature,” Appl. Phys. Lett., vol. 91 p. 032101, 2007.
[159] N. Hongsith, E. Wongrat, T. Kerdcharoen and S. Choopun, “Sensor response formula for sensor based on ZnO nanostructures,” Sensors Actuators B Chem., vol. 144 pp. 67-72, 2010.
[160] Y. Zhang, J. Li, G. An and X. He, “Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties,” Sensors Actuators B Chem., vol. 144 pp. 43-48, 2010.
[161] J. K. Choi, I. S. Hwang, S. J. Kim, J. S. Park, S. S. Park, U. Jeong, Y. C. Kang and J. H. Lee, “Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers,” Sensors Actuators B Chem., vol. 150 pp. 191-199, 2010.
[162] Y. D. Wang, X. H. Wu, Q. Su, Y. F. Li and Z. L. Zhou, “Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials,” Solid State Electro., vol. 45 pp. 347-350, 2001.
[163] I. Sta, M. Jlassi, M. Kandyla, M. Hajji, P. Koralli, F. Krout, M. Kompitsas and H. Ezzaouia, “Surface functionalization of sol-gel grown NiO thin films with palladium nanoparticles for hydrogen sensing,” Int. J. Hydrogen Energy, vol. 41 pp. 3291-3298, 2016.
[164] M. T. Hosseinnejad, M. Ghoranneviss, M. R. Hantehzadeh and E. Darabi, “Characterization and hydrogen gas sensing performance of Al-doped ZnO thin films synthesized by low energy plasma focus device,” J. Alloys Compd., vol. 689 pp. 740-750, 2016.
[165] S. Park, “High-response and selective hydrogen sensing properties of porous ZnO nanotubes,” Curr. Appl. Phys., vol. 16 pp. 1263-1269, 2016.
[166] S. J. Chang, W. Y. Weng, C. L. Hsu and T. J. Hsueh, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles,” Nano Commun. Netw., vol. 1 pp. 283-288, 2010.
[167] S. Hussain, T. Liu, N. Aslam, S. Zhao, T. Li, D. Hou and W. Zeng, “Assembly of bulbous ZnO nanorods to bulbous nanoflowers and their high selectivity towards formaldehyde,” J. Mater. Sci.: Mater. Electron., vol. 27 pp. 4966-4971, 2016.
[168] L. Shi, J. Cui, F. Zhao, D. Wang, T. Xie and Y. Lin, “High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO,” Phys. Chem. Chem. Phys., vol. 17 pp. 31316-31323, 2015.
[169] N. Han, L. Chai, Q. Wang, Y. Tian, P. Deng and Y. Chen, “Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO,” Sensors Actuators B Chem., vol. 147 pp. 525-530, 2010.
[170] Y. Cao, P. Hu, W. Pan, Y. Huang and D. Jia, “Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction,” Sensors Actuators B Chem., vol. 134 pp. 462-466, 2008.
[171] C. Xie, L. Xiao, M. Hu, Z. Bai, X. Xia and D. Zeng, “Fabrication and formaldehyde gas-sensing property of ZnO–MnO2 coplanar gas sensor arrays,” Sensors Actuators B Chem., vol. 145 pp. 457-463, 2010.
[172] N. Han, Y. Tian, X. Wu and Y. Chen, “Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO,” Sensors Actuators B Chem., vol. 138 pp. 228-235, 2009.
[173] A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan and M.R. Gholami, “The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing,” Int. J. Hydrogen Energy, vol. 37 pp. 15423-15432, 2012.
[174] M. M. Sivalingam and K. Balasubramanian, “Influence of the concentration of reducing agent on gold nanoparticles decorated reduced graphene oxide and its ammonia sensing performance,” Appl. Phys. A, vol. 123 p. 281, 2017.
[175] A.G. Bannov, J. Prášek, O. Jašek and L. Zajíčková, “Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material,” Sensors, vol. 17 p. 320, 2017.
[176] J. Guo, J. Zhang, H. Gong, D. Ju and B. Cao, “Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor,” Sensors Actuators B Chem., vol. 226 pp. 266-272, 2016.
[177] R. K. Chava, S. Y. Oh and Y. T. Yu, “Enhanced H2 gas sensing properties of Au@In2O3 core–shell hybrid metal–semiconductor heteronanostructures,” CrystEngComm, vol. 18 pp. 3655-3666, 2016.
[178] J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu and B. Cao, “High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles,” Sensors Actuators B Chem., vol. 199 pp. 339-345, 2014.
[179] S. Zhang, P. Song, J. Li, J. Zhang, Z. Yang and Q. Wang, “Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde,” Sensors Actuators B Chem., vol. 241 pp. 1130-1138, 2017.
[180] Y. Lin, W. Wei, Y. Wang, J. Zhou, D. Sun, X. Zhang and S. Ruan, “Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures,” J. Alloy Compd., vol. 650 pp. 37-44, 2015.