簡易檢索 / 詳目顯示

研究生: 翁瑜鈞
Wong, Yu-Jun
論文名稱: 一維微溝槽結構控制電致二維超分子手性微結構之大面積有序性
Control of large-area orderliness of electrically-induced 2D supramolecular chiral microstructures by 1D microgroove structures
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 膽固醇液晶Helfrich 形變微溝槽電致網格微結構超分子系統
外文關鍵詞: cholesteric liquid crystal, Helfrich deformation, microgroove, electrically-induced microstructures, supramolecular
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受外界影響下產生響應而引發的自組裝週期性微奈米結構,經常發生在各向異性的自組裝超分子系統(例如液晶系統)。然而,這些結構的有序性往往是不易控制的。本論文乃研究在膽固醇液晶的平面結構中,施予一平行於螺旋軸之外加電場下於空間中產生類似於正弦波形的二維週期性之Helfrich形變結構,利用於樣品基板上預先製作週期性之一維週期微溝槽結構,研究是否能有效地提升電致二維形變結構之大面積有序性。
    實驗結果顯示,當施加外加電場於平面型膽固醇液晶時,產生Helfrich形變之二維網格結構具有局部(微觀尺度)有序而大面積(宏觀尺度)無序之特徵。若在樣品的基板上預先建立週期性的一維週期微溝槽,且微溝槽的週期與膽固醇液晶受電場引致的Helfrich形變產生的二維網格間距匹配時,能有效地控制二維網格微結構變成大面積且有序排列。實驗結果進一步發現,二維網格微結構的大面積有序性與一維週期微溝槽深度有直接關係。另外,本論文亦討論到當一維微溝槽的週期與膽固醇液晶電致二維網格結構週期不匹配時,後者容易受到一維週期微溝槽的影響而產生錯位、差排等現象。此研究成果提升了著名的Helfrich形變現象的可應用性,希冀能進一步達到控制自組裝超分子系統中的週期性微奈米結構,相關研究成果更希望能利於人類的科技進展。

    Self-assembled periodic micro/nanostructures triggered by responses to external influences often occur in anisotropic self-assembled supramolecular systems (e.g., liquid crystal systems). However, the order of these structures is often not easily controllable. This thesis aims to study 2D periodic Helfrich deformation structures by applying an electric field parallel to the helical axis of the cholesteric liquid crystal (CLC) planar texture and to control the large-area orderliness of the 2D microstructure by using the guidance of the 1D periodic microgroove structure prefabricated on the sample substrate.
    Experimental results show that the 2D microgrid structure of Helfrich deformation is characterized by local (microscopic) order and large-area (macroscopic) disorder when an electric field is applied to the planar CLCs along the helical axis. If 1D periodic microgrooves are pre-established on the substrate of the sample and the period of the microgrooves matches the 2D microgrid spacing, then the 2D microgrid structure can be effectively controlled to form a large-area ordered arrangement. The large-area order of the 2D microgrid structure is directly related to the depth of 1D periodic microgrooves. When the period of 1D microgrooves does not match that of the 2D microgrid structure, the latter becomes prone to dislocation. This result improves the applicability of the well-known Helfrich deformation phenomenon. In the future, periodic micro–nano structures based on self-assembled supramolecular systems are expected to be further controlled or even customized, thereby contributing to the advancement of human science and technology applications.

    摘要 I 誌謝 XVI 目錄 XVII 圖目錄 XX 表目錄 XXV 第一章 緒論 1 第二章 液晶介紹 3 2.1 液晶簡介 3 2.2 液晶種類 4 2.2.1 溶致型液晶 4 2.2.2 熱致型液晶 4 2.2.3 棒狀分子液晶 5 2.3 液晶物理特性 10 2.3.1 光學異向性與雙折射性 10 2.3.2 介電異向性 15 2.3.3 溫度對液晶的影響 17 2.3.4 連續彈性體理論 18 第三章 膽固醇液晶光學特性與外部刺激響應 20 3.1 膽固醇液晶的光學特性 20 3.1.1 光波在膽固醇液晶內的傳播 20 3.1.2 選擇性布拉格反射 21 3.2 影響膽固醇液晶螺距之因素 22 3.2.1 手性分子摻雜濃度的影響 22 3.2.2 溫度的影響 23 3.2.3 電場的影響 23 3.2.4 磁場的影響 24 3.3 膽固醇液晶之電致週期不穩定結構 25 3.4 Helfrich-Hurault形變 27 3.4.1 電場引致Helfrich形變 28 3.4.2 磁場引致Helfrich形變 32 3.4.3 光引致Helfrich形變 33 3.4.4 外應力引致Helfrich形變 36 第四章 樣品製備與實驗架設 37 4.1 實驗材料 37 4.2 樣品製備 41 4.2.1 玻璃清潔與配向 41 4.2.2 製備玻璃空樣品 42 4.2.3 在基板上製作微溝槽結構 42 4.2.4 灌入膽固醇液晶 43 4.3 實驗量測架設 44 4.3.1 製作微溝槽結構之光路架設 44 4.3.2 影像觀測與反射頻譜量測之光路架設 45 第五章 實驗結果與討論 47 5.1 膽固醇液晶之電致Helfrich形變產生二維網格狀微結構 47 5.2 一維週期微溝槽對膽固醇液晶電致二維網格微結構之影響 55 5.3 不同深度的微溝槽結構對電場引致二維微結構之影響 66 5.4 微溝槽週期與電場引致二維網格結構不匹配之影響 72 第六章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 77 參考文獻 78

    1. Y. Fang, G. Sun, Y. Bi, and H. Zhi, “Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism,” Sci. Bull. 60(2), 256–263 (2015).
    2. J. Lv, Z. Liu, J. Zhang, J. Huo, and Y. Yu, “Bio-based episulfide composed of cardanol/cardol for anti-corrosion coating applications,” Polymer 121, 286–296 (2017).
    3. C. Neinhuis, and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79(6), 667–677 (1997).
    4. D. X. Oh, Y. J. Cha, H.-L. Nguyen, H. H. Je, Y. S. Jho, D. S. Hwang, and D. K. Yoon, “Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions,” Sci. Rep. 6(1), 1–6 (2016).
    5. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
    6. Y. Fu, C. A. Tippets, E. U. Donev, and R. Lopez, “Structural colors: from natural to artificial systems,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(5), 758–775 (2016).
    7. L. Chen, M. Lopez-Garcia, M. P. Taverne, X. Zheng, Y.-L. D. Ho, and J. Rarity, “Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy,” Opt. Lett. 42(8), 1584–1587 (2017).
    8. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
    9. K. Bertoldi, V. Vitelli, J. Christensen, and M. Van Hecke, “Flexible mechanical metamaterials,” Nat. Rev. Mater. 2(11), 1–11 (2017).
    10. M. Ebrahimpouri, O. Quevedo-Teruel, and E. Rajo-Iglesias, “Design guidelines for gap waveguide technology based on glide-symmetric holey structures,” IEEE Microw. Wirel. Compon. Lett. 27(6), 542–544 (2017).
    11. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
    12. H. C. Jau, Y. Li, C. C. Li, C. W. Chen, C. T. Wang, H. K. Bisoyi, T. H. Lin, T. J. Bunning, and Q. Li, “Light‐driven wide‐range nonmechanical beam steering and spectrum scanning based on a self‐organized liquid crystal grating enabled by a chiral molecular switch,” Adv. Opt. Mater. 3(2), 166–170 (2015).
    13. H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J.-H. Liu, and A. Y.-G. Fuh, “Optically-tunable beam steering grating based on azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
    14. R. S. Zola, H. K. Bisoyi, H. Wang, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic control of light direction enabled by stimuli‐responsive liquid crystal gratings,” Adv. Mater. 31(7), 1806172 (2019).
    15. P.-G. De Gennes, and J. Prost, The physics of liquid crystals (Oxford university press, 1993).
    16. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    17. S.-W. Oh, S.-M. Nam, S.-H. Kim, T.-H. Yoon, and W. S. Kim, “Self-regulation of infrared using a liquid crystal mixture doped with push–pull azobenzene for energy-saving smart windows,” ACS Appl. Mater. Interfaces 13(4), 5028–5033 (2021).
    18. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    19. S.-A. Jiang, C.-H. Wang, Y.-S. Zhang, T.-S. Mo, S.-Y. Huang, X.-L. Hsieh, Y.-J. Wong, J.-D. Lin, and C.-R. Lee, “Control of Large-Area Orderliness of a 2D Supramolecular Chiral Microstructure by a 1D Interference Field,” ACS Appl. Mater. Interfaces 13(37), 44916–44924 (2021).
    20. F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9(1), 421–441 (1888).
    21. O. Lehmann, “Über fliessende krystalle,” Z. Phys. Chem. 4(1), 462–472 (1889).
    22. H. Kawamoto, “The history of liquid-crystal displays,”Proc. IEEE 90(4), 460–500 (2002).
    23. S. Chandrashekar, Liquid crystals (Cambridge University Press, 2020).
    24. 松本正一、角田市良 (劉瑞祥 譯),液晶之基礎與應用 (國立編譯館,台灣,1996)。
    25. G. Vertogen, and W. H. De Jeu, Thermotropic liquid crystals, fundamentals (Springer Science & Business Media, 2012).
    26. 田民波, TFT液晶顯示原理與技術 (五南圖書出版股份有限公司,台灣,2008)。
    27. P. J. Wojtowicz, P. Sheng, and E. Priestley, Introduction to liquid crystals (Springer, 1975).
    28. V. V. Belyaev, “The viscosity of nematic liquid crystals,” Russian Chemical Reviews 58(10), 917 (1989).
    29. B. Bahadur, Liquid crystals: applications and uses (World scientific, 1990).
    30. A. Yariv, and P. Yeh, Photonics: optical electronics in modern communications (Oxford university press, 2007).
    31. E. Hecht, Optics (Pearson Education India, 2012), pp. 351–360.
    32. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
    33. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Techonl. 1(1), 51–61 (2005).
    34. F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25 , 19–28 (1958).
    35. P. De Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6(3), 163–165 (1968).
    36. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    37. C. Bahr, and H.-S. Kitzerow, Chirality in liquid crystals (Springer, 2001).
    38. P. J. Collings, and M. Hird, Introduction to liquid crystals chemistry and physics (Crc Press, 2017).
    39. R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12(9), 281–282 (1968).
    40. P. Sheng, Introduction to Liquid Crystals. (Springer, 1975) pp. 103–127.
    41. S. Belyaev, and L. Blinov, “Instability of planar texture of a cholesteric liquid crystal in an electric field,” Zh. Eksp. Teor. Fiz.(USSR) 70, 84–190 (1976).
    42. D. Subacius, P. J. Bos, and O. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    43. A. Y.-G. Fuh, C.-H. Lin, and C.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1R), 211–218 (2002).
    44. A. Ryabchun, and A. Bobrovsky, “Cholesteric liquid crystal materials for tunable diffractive optics,” Adv. Opt. Mater. 6(15), 1800335 (2018).
    45. A. Ryabchun, D. Yakovlev, A. Bobrovsky, and N. Katsonis, “Dynamic diffractive patterns in helix-inverting cholesteric liquid crystals,” ACS Appl. Mater. Interfaces 11(11), 10895–10904 (2019).
    46. J. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
    47. M. Beliaev, D. Zöllner, A. Pacureanu, P. Zaslansky, and I. Zlotnikov, “Dynamics of topological defects and structural synchronization in a forming periodic tissue,” Nat. Phys. 17(3), 410–415 (2021).
    48. Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue and Cell 4(2), 189–217 (1972).
    49. M. Mitov, “Cholesteric liquid crystals in living matter,” Soft Matter 13(23), 4176–4209 (2017).
    50. A. D. Rey, “Liquid crystal models of biological materials and processes,” Soft Matter 6(15), 3402–3429 (2010).
    51. J.-C. Roland, D. Reis, and B. Vian, “Liquid crystal order and turbulence in the planar twist of the growing plant cell walls,” Tissue Cell 24(3), 335–345 (1992).
    52. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    53. I. I. Smalyukh, and O. Lavrentovich, “Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals,” Phys. Rev. Lett. 90(8), 085503 (2003).
    54. M. C. Varney, Q. Zhang, B. Senyuk, and I. I. Smalyukh, “Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals,” Phys. Rev. E 94(4), 042709 (2016).
    55. M. Yu, H. Yang, and D.-K. Yang, “Stabilized electrically induced Helfrich deformation and enhanced color tuning in cholesteric liquid crystals,” Soft Matter 13(46), 8728–8735 (2017).
    56. P. Oswald, and P. Pieranski, Smectic and columnar liquid crystals: concepts and physical properties illustrated by experiments (Crc Press, 2005).
    57. L. M. Blinov, and V. G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer Science & Business Media, 1996).
    58. M. Kleman, and O. D. Lavrentovich, Soft matter physics: an introduction (Springer, 2003).
    59. B. Senyuk, I. I. Smalyukh, and O. Lavrentovich, “Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,” Phys. Rev. E 74(1), 011712 (2006).
    60. T. Ishikawa, and O. Lavrentovich, “Undulations in a confined lamellar system with surface anchoring,” Phys. Rev. E 63(3), 030501 (2001).
    61. H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
    62. U. Hrozhyk, S. Serak, N. Tabiryan, and T. Bunning, “Periodic structures generated by light in chiral liquid crystals,” Opt. Express 15(15), 9273–9280 (2007).
    63. N. A. Clark, and R. B. Meyer, “Strain‐induced instability of monodomain smectic A and cholesteric liquid crystals,” Appl. Phys. Lett. 22(10), 493–494 (1973).
    64. M. Delaye, R. Ribotta, and G. Durand, “Buckling instability of the layers in a smectic-A liquid crystal,” Phys. Lett. A 44(2), 139–140 (1973).
    65. N. A. Clark, and P. S. Pershan, “Light scattering by deformation of the plane texture of smectic and cholesteric liquid crystals,” Phys. Rev. Lett. 30(1), 3–6 (1973).
    66. Ciba® IRGACURE® Photoinitiator. Ciba Specialty Chemicals, Coating Effects Segment, (30.8.2001.Basle).
    67. C. Gerritsma, and P. Van Zanten, “Periodic perturbations in the cholesteric plane texture,” Phys. Lett. A 37(1), 47–48 (1971).
    68. N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, “Buckling of a sheared cholesteric liquid crystal,” Phys. Lett. A 32(2), 1134–1143 (1985).

    下載圖示 校內:2024-08-26公開
    校外:2024-08-26公開
    QR CODE