| 研究生: |
張均輔 Chang, Chun-Fu |
|---|---|
| 論文名稱: |
非線性彈性層厚度對黏著接觸力學行為之影響 Effect of Thickness on The Adhesive Contact of Hyperelastic Layers |
| 指導教授: |
林育芸
Lin, Y. Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 超彈性 、能量釋放率 、接觸力學 |
| 外文關鍵詞: | energy release rate, contact mechanics, hyperelastic |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討具不可壓縮性之Neo-Hookean 彈性層與剛性球體壓痕機間因黏著接觸產生大變形的問題。本文之結果為廣義大變形黏著接觸理論之特例,此理論公式係利用無黏著接觸大變形問題之解以求得大變形黏著接觸問題的答案。利用此理論公式,我們將原本適用於小變形的JKR理論公式,進而擴展為適用於大變形之黏著接觸問題,唯一限制是材料為超彈性(Hyperelastic)。本文黏著接觸大變形問題之結果來自於:(1)先利用有限元素法分析無黏著接觸大變形問題,再套用理論公式預測;(2)直接於有限元素模型上施加黏著效應元素求解。利用數值分析結果進ㄧ步討論彈性層厚度對黏著接觸問題之影響。
In this thesis, we study in detail the effect of large deformation and material nonlinearity on the theory of adhesive contact for a Neo-Hookean layer with a spherical rigid indenter. Our results are special cases of a general theory which models large deformation adhesive contact of spherical lenses. This theory shows that the solution of any large deformation adhesive contact problem can be obtained from the solution of a corresponding large deformation non-adhesive contact problem. Using this theory, we extend the small strain JKR theory to the large deformation regime, the only restriction that the materials are hyperelastic. The results of adhesive contact problem are obtained using two methods: (1) the prediction by the large deformation adhesive contact theory is obtained using finite element simulation results for a corresponding large deformation non–adhesive problem; (2) we solve the adhesive contact problems directly by FEM using a cohesive zone model to quantify adhesive interaction. We also discussed the effect of layer thickness on the adhesive contact theory.
[1]陳信揚,"非線性彈性體之黏著接觸力學分析",國立成功大學土木工程學系,碩士論文,(2005)。
[2]K. L. Johnson, Contact Mechanics, Cambridge University Press (1985).
[3]K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids”. Proc. Roy Soc., A324, pp301-320 (1971).
[4]D. Tabor, Surface Physics of Material, Vol,II, Chap.10, Academic Press (1975).
[5]D. Maugis, “Adhesion of Sphere: The JKR-DMT Transition Using a Dugdale Modle”, J. Colloid Int. Sci. Vol 150 No. 1. April 1992, pp 243-269 (1992).
[6]K. R.Shull, D. Ahn, W. L. Chen, C.M. Flanigan, A.J. Crosby, “Axisymmetric adhesion tests of soft materials”, Macromol. Chem. Phys. 199, pp 489-511 (1998).
[7]C.Y. Hui, J.M. Baney and Y.Y. Lin., “Mechanics of the JKR(Johnson- Kendall-Robert) adhesion test”, Adhesion Measurement of Film and Coating, Vol.2, pp 299-328 (2001).
[8]Y.Y. Lin. and C.Y. Hui, “Mechanics of Contact and Adhesion between Viscoelastic Sphere: An Analysis of Hysteresis during Loading and Unloading”, J. Polym. Sci.:Part B:Polym. Phys., Vol. 40, pp 772-793 (2002).
[9]ABAQUS 6.4 User’s Manual