| 研究生: |
鄭依蘋 Cheng, I-Pin |
|---|---|
| 論文名稱: |
U型水艙在橫搖狀態下的流場模擬與能量分析 The Flow Field Simulation and Energy Analysis in Rolling U-shaped Water Tank |
| 指導教授: |
林忠宏
Lin, Chung-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | U型水艙 、船體運動 、計算流體力學(CFD) 、質點影像測速(PIV) |
| 外文關鍵詞: | U-shaped water tank, ship motion, computational fluid dynamic(CFD), particle image velocimetry(PIV) |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討是否能從航行中之船隻回收能源,利用現今被廣泛利用的計算流體力學(Computational Fluid Dynamics,CFD)工具ANSYS fluent15.0進行流場模擬與分析,本研究設置三種水艙兩側截面積/水艙底部截面積比值不同的U型水艙模型安裝於簡諧晃蕩機構,以相同的運動狀態與載水量進行實驗,並同時以ANSYS fluent15.0模擬水艙流場。為了確認模擬的準確性,透過質點影像測速(Particle Image Velocimetry,PIV)的技術驗證模擬流場是否與實際流場符合。針對U型水艙在橫搖狀態下所產生的流場進行模擬與分析,透過模擬的結果取出流場速度的數據探討從流場中回收能源的可能性。模擬結果顯示,當水艙兩側截面積/水艙底部截面積比值較大時,則水艙底部流場速度也較大。對於實船上的水艙模擬的評估回收能量,本研究也設計一實船U型水艙,其寬為30m高為22m,兩側截面寬為5m,底部高度則取其一半高為2.5m,並以實際跨洋貨櫃輪在夏季航線的船體橫搖做為輸入的運動方程參數,在週期16.67秒,最大橫搖角度5度及載水量50%的環境下做模擬估計一分鐘內平均功率為2.5千瓦(kW)。
This study discussed if there is probability to recycle the energy while ship is rolling, by using popular computational fluid dynamic (CFD) tool ANSYS fluent 15.0 nowadays to simulate the flow field. In the study, there were three different area ratio of U-shape water tank setting on a simple harmonic motion mechanism, and start moving in same motion, also simulated the flow filed of water tank in the same time. By the technology of particle image velocimetry (PIV) could prove whether the simulations were accurate. The velocity u of the flow field could help the discussion to the recycling energy from rolling ship. The results shown that when the area ratio were larger then the velocity u of flow filed were larger. About the real ship’s recycling energy probability, design a real size water tank of real ship in ANSYS fluent, and set the actual container vessels in the summer course in its hull motion, in period 16.67 second and maximum rolling angle 5 degree, has average power of 2.5 kilowatts in one minute.
[1] Adrian, R.J., Particle-imaging techniques for experimental fluid mechanics. Annual review of fluid mechanics, 1991. 23(1): p. 261-304.
[2] Hirt, C.W. and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 1981. 39(1): p. 201-225.
[3] http://www.pivtec.com/pivview.html.
[4] http://www.icpdas.com/root/product/solutions/machine_automation/pc-based_solutions/pc_based_motion_tc.html
[5] Kähler, C.J., S. Scharnowski, and C. Cierpka, On the resolution limit of digital particle image velocimetry. Experiments in fluids, 2012. 52(6): p. 1629-1639.
[6] Moirod, N., et al. Experimental and Numerical Investigations of the Global Forces Exerted by Fluid Motions on LNGC Prismatic Tanks Boundaries. in The Twentieth International Offshore and Polar Engineering Conference. 2010. International Society of Offshore and Polar Engineers.
[7] Okamoto, K., et al., Analysis on the Self-Induced Sloshing Using Particle Image Velocimetry. Nuclear Engineering Research Laboratory, 2004.
[8] Patankar, S., Numerical heat transfer and fluid flow. 1980: CRC press.
[9] Sames, P.C., D. Marcouly, and T.E. Schellin, Sloshing in rectangular and cylindrical tanks. Journal of Ship Research, 2002. 46(3): p. 186-200.
[10] 王亭皓,黃振國,陳建宏, 沖激運動與減降研究. 行政院國家科學委員會補助專題研究計畫成果報告, 2010.
[11] 王柏文, 黃建樺,陳紀川, 艙櫃沖激負荷計算與規範值之比較. 2014.
[12] 江定宇, 葉克家, 彩色質點影像測速法於明渠後陷階梯流場之試驗研究. 2003.
[13] 李誼樂, 劉應中, and 繆國平, 艙內晃蕩對船舶橫搖影響的數值分析. 上海交通大學學報, 2000. 34(1): p. 6-9.
[14] 周文祥, 穿浪式雙體船之阻力計算與分析. 臺灣大學工程科學及海洋工程學研究所學位論文, 2009: p. 1-101.
[15] 林士家,陳建宏, 二維沖激問題的黏性流計算. 中國造船暨輪機工程研討會暨國科會成果發表會, 2008.
[16] 祁江涛, 顾民, and 吴乘胜, 液舱晃荡的数值模拟. 船舶力學, 2008. 12(4): p. 574-581.
[17] 莫鈞維, 利用氣壓與震盪水柱轉換波浪能量方法之研究. 成功大學航空太空工程學系學位論文, 2013: p. 1-102.
[18] 陳泓翔, 受肋條調制的矩形管道之流場特性: 流場可視化與 PIV 量測. 2004.
[19] 黃冠益, 壓電陶瓷晶片應用於量測液面晃盪對艙壁作用力之探討. 成功大學系統及船舶機電工程學系學位論文, 2009: p. 1-54.
[20] 黃胤瑄, 質點影像測速演算法之精準度探討, in 機械與機電工程學系. 2015, 國立臺灣海洋大學: 基隆市. p. 47.
校內:2021-08-17公開