| 研究生: |
曾士彥 Tseng, Shih-Yen |
|---|---|
| 論文名稱: |
加氨對電解水產氫效應之研究 Study on the effect of added ammonia on hydrogen production by water electrolysis |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 氫 、電解 、開孔率 、氨 、質子交換膜 |
| 外文關鍵詞: | hydrogen, electrolysis, holing rate, ammonia, proton exchange membrane |
| 相關次數: | 點閱:138 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫能是高能量密度的燃料且燃燒後無二次污染,為新世紀之最佳替代能源,而電解水產氫則是目前產生氫氣常用的方法,擁有高效能、產生氫氣純度高、使用便利等特色。
本研究主要由自行設計的電解裝置進行電解,在常溫常壓 (25℃,1atm)下,測試產氫速率。控制參數為電極材質(不鏽鋼S304、不鏽鋼鍍Ni、不鏽鋼鍍Ti、不鏽鋼鍍Rh)、不鏽鋼開孔板(開孔率 0%、10.08%、29.61%)、電解質溶液KOH濃度(1M、3M、5M),再分別加入NH_3濃度(0M、0.1M、1M),探討各控制參數對產氫濃度、產氫速率、操作電壓與效率之效應。
實驗結果顯示開孔率對於降低電壓的影響很大,開孔率由0%至29.61%時,電壓效率提升7%,能量轉換效率提升8%;在加氨電解方面,以KOH濃度5M和NH_31M的組合最好,在電流密度為189.4 mA/cm^2下,產氫速率可達425ml/min。此外搭配Nafion® -117質子交換膜使用,不經由後段氣體純化處理,即可以有效將氫氣的純度提升至99.98%,代表電解槽體密合度良好,沒有嚴重的氣體洩漏及混合情況發生。
Hydrogen is a high energy density fuel and without secondary pollution after combustion. It’s the best alternative energy for the new century. To electrolyze water for producing hydrogen is a common way nowadays. It’s efficient, convenient and the purity of hydrogen is high.
To electrolyze by the designed electrolytic device is the main idea in this study. Under the normal state (25℃, 1atm), the parameters are electrode (stainless steel S304, stainless steel-plated Ni, stainless steel-plated Ti, stainless steel-plated Rh), stainless steel punched plate (opening rate of 0%, 10.08%, 29.61%), and electrolyte solution KOH concentration (1M, 3M, 5M) with adding NH_3 (0M, 0.1M, and 1M). This study is to explore how these parameters affect hydrogen concentration, hydrogen production rate, operating voltage, and efficiency.
The result shows the impact of holing rate of electrode plate on lowering voltage is great. While holing rate is from 0 to 29.61%, the voltage efficiency increases 7%, and energy conversion efficiency increases 5.7%. With adding ammonia in the electrolysis, the combination of concentration 5M KOH and 1M NH_3 is the best. Under the current density of 189.4mA/cm^2, the hydrogen generation rate is up to 425ml/min. In addition, to use with Nafion®-117 proton exchange membrane, without the back-gas purification, can effectively improve the hydrogen purity up to 99.98%, representing that the sealed cell body is good without serious leakage or mixing occurs.
1.方良吉,“2010年能源產業技術白皮書”,經濟部能源局,2010.
2.李方正,“新能源”,新文京開發出版股份有限公司,2009.
3.蔡信行,“替代燃料與再生能源”,中國石油公司訓練所,2002.
4.林天行、譚小金、葉仰哲、范馨文,“能源材料發展趨勢與機會探討”,工業技術研究院,2006.
5.王淑玲,“硼氫化鈉的儲氫系統研究”,國立成功大學化學工程研究所碩士論文,2008.
6.毛宗強,“氫能-21世紀的綠色能源”,新文京開發出板股份有限公司,2008.
7.S. Dunn, “Hydrogen futures: toward a sustainable energy system”, International Journal of Hydrogen Energy, vol.27, pp.235-264, 2002.
8.尤如瑾,“氫能源技術發展與我國燃料電池產業契機之研究”,工業技術研究院,2005.
9.S.Bari, M.M. Esmaeil, “Effect of H_2/O_2 addition in increasing the thermal efficiency of a diesel engine”, Fuel, vol.89, pp.378-383, 2010.
10.張志麟,“太陽能氫氣產生器的研製”,國立台灣大學機械工程研究所碩士論文,2002.
11.黃柏升,“電解水產氫效率之參數分析”,國立中央大學機械工程研究所碩士論文,2008.
12.宋宛倫,“超音波應用對於電解水產氫氣阻現象影響之研究”,國立雲林科技大學環境與安全衛生工程研究所碩士論文,2008.
13.陳裕傑,“水電解產生氫氧混合氣之研究”,大葉大學電機工程研究所碩士論文,2009.
14.N. Nagai, M. Takeuchi, T. Kimura, T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, vol.28, pp.35-41, 2003.
15.R. Kothari, D. Buddhi, R.L. Sawhney, “Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen”, International Journal of Hydrogen Energy, vol.30, pp.261-263, 2005.
16.J.C. Ganley, “High temperature and pressure alkaline electrolysis”, International Journal of Hydrogen Energy, vol.34, pp.3604-3611, 2009.
17.J.C. Padilha, R.F.de Souza, R.S.Goncalves, J.R. Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis”, Electrochemistry Communi- cations, vol.8, pp. 211-216, 2006.
18.D.L. Stojić, M.P. Marčeta, S.P. Sovilj, Š.S. Miljanić, “Hydrogen generation from water electrolysis–possibilities of energy saving”, Journal of Power Sources, vol.118, pp.315-319, 2003.
19.M.P.M. Kaninski, D.L. Stojić, D.P. Šaponjić, N.I. Potkonjak, Š.S. Miljanić, “Comparison of different electrode materials–Energy requirements in the electrolytic hydrogen evolution process”, Journal of Power Sources, vol.157, pp.758-764, 2006.
20.S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, vol.26, pp.653-659, 2001.
21.D. Chyu, “O_2Reduction at the Pt/Nafion Interface in 85% Concentrated H_3 PO_4”, Electrochimica Acta, vol.43, pp.3711-3718, 1998.
22.P. Millet, F. Andolfatto, and R. Durand, “Design and Performance of a Solid Polymer Electrolyte Water Electrolyzer”, International Journal of hydrogen energy, vol.21(2), pp.87-93, 1996.
23.A. Roy, S. Watson, D. Infield, “Comparison of electrical energy efficiency of atmospheric and high-pressure electrolyseis”, International Journal of Hydrogen Energy, vol.31, pp1964-1979, 2006.
24.T. Take, K. Tsurutani, M. Umeda, “Hydrogen production by methanol–water solution electrolysis”, Journal of Power Sources, vol.164, pp9-16, 2007.
25.R. F. de Souza, J. C. Padilha, R. S. Goncalves, M. O. de Souza, J. R. Berthelot, “Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device”, Journal of Power Sources, vol.164, pp792-798, 2007.
26.Sorensen,B., “Hydrogen and Fuel Cell”, Elsevier Academic Press, Burlington, MA 01803, USA, p.6.2005.
27.翟秀靜, “新能源技術”,化學工業出版社,2009.
28.曲新生、陳發林, “氫能技術”,五南圖書出版公司,2006.
29.R. Kothari, D.Buddhi, RL.Sawhney, “Sources and technology for hydrogen production: a review”, International Journal Global Energy, Issues, vol.21, pp.154-78, 2004.
30.J. Ivy, “Summery of electrolytic hydrogen production: milestone completion report”, NREL/MP-560-36734, 2004.
31.M. Cooper and G.G. Botte, “Hydrogen Production from the Electro–oxidation of Ammonia Catalyzed by Platinum and Rhodium on Raney Nickel Substrate”, Journal of The Electrochemical Society, vol.153, pp.A1894-A1901, 2006.
32.F. Vitse, M. Cooper, G.G. Botte, “On the use of ammonia electrolysis for hydrogen production”, Journal of Power Sources, vol.142, pp.18-26 , 2005.
33.M. Muthuvel and G.G. Botte, “Trends in Ammonia Electrolysis”, Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701.
34.S.D. Li, C.C. Wang , C.Y. Chen, “Water electrolysis in the presence of an ultrasonic field”, Electrochimica Acta, vol.54, pp.3877-3883, 2009.
35.田福助,“電化學基本原理與應用”,五洲出版社,2004.
36.郭春億,“電解質水溶液之性質”,靜宜大學應用化學研究所,碩士論文,2007.
37.N. Nagai, M. Takeuchi, T. Kimura, T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, vol.28, pp. 35-41, 2003.
38.Bockris, John O'M., “Electrochemistry of Cleaner environments”, Plenum Press, New York, 1972.
39.K. Kikuchi, Y. Tanaka, Y. Saihara, M. Maeda, M. Kawamura, Z. Ogumi, “Concentration of hydrogen nanobubbles in electrolyzed water”, Journal of Colloid and Interface Science, vol.298, pp.914-919, 2006.
40.H. Vogt, R.J. Balzer, “The bubble coverage of gas-evolving electrodes in stagnant electrolytes”, Electrochimica Acta, vol. 50, pp.2073-2079, 2005.
41.R.G. Compton, J.C. Eklund, S.D. Page, G.H.W. Sanders, and J. Booth, “Voltammetry in the presence of Ultrasound–Sonovoltammetry and surface effects”, Journal of Physical Chemistry, vol.98, pp.12410-12414, 1994.
42.J. Koryta, J. Dvořak, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York, 1993.
43.松尾昌樹,“電解水的基礎與利用技術”,技報堂出版株式會社,2000.
44.黃鎮江,“燃料電池”,全華圖書股份有限公司,2007.