簡易檢索 / 詳目顯示

研究生: 苗庭瑄
Miau, Ting-Hsuan
論文名稱: 高精度無光罩微影技術之對位系統的開發與應用
Development and Application of Alignment System for High-Precision Maskless Lithography
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 無光罩微影對位系統陣列式數位光學影像感測器影像處理
外文關鍵詞: maskless lithography, alignment system, image sensors, image processing
相關次數: 點閱:84下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高精度的無光罩微影技術已經廣泛應用於黃光微影製程,其技術重點除了最小線寬/線距的曝光能力外,控制曝光位置的對位能力同樣是極其重要;只有在擁有精準的對位曝光能力後,才能夠將高精度無光罩微影技術應用於多層曝光,避免短路、斷路、電性不良等問題。因此,本研究針對實驗室自行開發之高精度無光罩式曝光機設計一套對位系統,在不影響原機台架構的情況下,利用兩個陣列式數位光學影像感測器搭配影像處理技術,成功擁有控制機台曝光位置的對位曝光能力。本研究開發之對位系統,透過擷取對位靶標的影像,利用銳利度函數與二分搜尋法進行自動對焦,而後透過特徵提取的方式得到對位靶標的座標,以此資訊換算曝光的起始位置,並由兩個對位靶標的座標計算試片的偏移、旋轉、漲縮等資訊進行補償,達到精準曝光的目的,使曝光圖形可以精準匹配試片上的對位標靶。本研究利用測試圖進行對位系統的實測,其結果在X方向平均誤差為 0.5 μm,Y方向平均誤差 1.0 μm,最大誤差值小於 2.0 μm,足以應付中高階電路板的曝光應用。最後將對位系統實際應用於電子封裝產業的產品,其成果除了在最小線寬/線距上滿足產業要求的 10/10 μm,線路圖也與基板的靶標正確對準,成功控制曝光之線路位置。

    Photolithography process plays an important role in contemporary semiconductor industry. The maskless lithography system developed earlier in our laboratory can perform photolithography without using a physical mask. In addition to UV patterning of small feature sizes, the alignment of multi-layered UV patterns is also extremely important. Therefore, in this study, an alignment system was designed for a maskless lithography system. Two image sensors with fine pixel resolution were used along with image processing technologies. Sharpness function and binary search method are used for auto-focusing of images. The coordinates of the alignment marks are obtained by means of feature extraction and then used for coordinating the UV exposure processes. The alignment system has been experimentally tested and the average error of alignment is 0.5 μm and 1.0 μm along the scanning (X) direction and its perpendicular (Y) direction. The maximum alignment error value is less than 2.0 μm. Finally, the alignment system and the maskless UV exposure system are applied to real printed circuit board (PCB) products used in IC-packaging industry with a minimum line/space of 10/10 μm. The UV exposed and developed patterns on a photo-resist layer show excellent pattern accuracy and alignment accuracy.

    摘要 I ABSTRACT II 致謝 IX 目錄 X 圖目錄 XII 表目錄 XVI 第 1 章 緒論 1 1.1背景 1 1.2文獻回顧 1 1.2.1數位光學處理技術 (Digital Light Processing, DLP) 2 1.2.2自動對焦 5 1.3研究動機 13 1.4 論文架構 14 第 2 章 高精度無光罩曝光機與機器視覺影像對位模組 15 2.1 光學引擎 16 2.1.1 UV-LED光源模組 16 2.1.2反轉式全反射稜鏡 17 2.1.1 倍縮UV成像鏡頭 18 2.2 伺服位移平台 18 2.3跳躍式斜掃描曝光演算法 19 2.4機器視覺影像對位模組 21 2.5自動對焦方法介紹 21 2.5.1銳利度函數 22 2.5.2對焦搜尋演算法 27 2.6影像處理方法 28 2.6.1中值濾波器 28 2.6.2霍夫圓變換 29 2.6.3相位相關法 (Phase Correlation) 30 第 3 章 對位系統 32 3.1對位流程 33 3.2前置準備 33 3.2.1銳利度函數選擇 34 3.2.2特徵提取 37 3.3座標建立與量測 38 3.4曝光起點換算與旋轉漲縮補償 43 第 4 章 實驗結果 47 4.1實際測試 47 4.1.1第零層製作與對位前置準備 48 4.1.2實際對位測試 50 4.1.3對位檢測軟體 51 4.1.4測試結果 53 4.2 應用實例 55 4.2.1前置準備 57 4.2.2實際對位曝光 59 4.2.3對位曝光結果 59 第 5 章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65

    [1] K. Takahashi, J. Setoyama, “A UV-exposure system using DMD,” Electron. Comm. Jpn. Pt. II, vol. 83, pp. 56-58, 2000.
    [2] E. J. Hansotte, E. C. Carignan, W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” Proc. SPIE, vol. 7932, pp. 53-66, 2011.
    [3] H. L. Chien, Y. H. Chiu, Y. C. Lee, “Maskless lithography based on oblique scanning of point array with digital distortion correction,” Opt. Lasers Eng., vol. 136, pp. 106313, 2021.
    [4] S. Diez, “The next generation of maskless lithography,” Proc. SPIE, vol. 9761, pp.1-11, 2016.
    [5] K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, W. Mei, “High-resolution maskless lithography,” J. Micro/ Nanolithogr., MEMS MOEMS, vol. 2, no. 4, pp. 331-339, 2003.
    [6] 杜和達,微型光學式自動對焦系統之模組化設計與提升其對焦精度及速度之影像處理法,國立成功大學機械系,2021。
    [7] C. S. Liu, S. H. Jiang, “Design and experimental validation of novel enhanced- performance autofocusing microscope,” Appl. Phys. B, vol. 117, no. 4, pp. 1161-1171, 2014.
    [8] 江昇鴻,新型光學式自動聚焦顯微鏡的設計與其性能分析,國立中央大學機械工程學系,2013。
    [9] 楊駿億,光學式自動聚焦系統之雙共軛與刀緣重心法之比較,國立中正大學機械工程學系,2016。
    [10] 賴律臻,差動式疊紋自動對焦系統,國立中央大學光機電工程研究所,2011。
    [11] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, Y. H. Chang, “Development of an auto-focus system based on the moiré method,” Measurement, vol. 44, no. 10, pp. 1793-1800, 2011.
    [12] S. Kim, J. Na, M. J. Kim, B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express, vol. 16, no. 8, pp. 5516-5526, 2008.
    [13] G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Opt., vol. 42, no. 19, pp. 3882-3887, 2003.
    [14] S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express, vol. 22, no. 22, pp. 27392-27397, 2014.
    [15] T. Anna, V. Srivastava, D. S. Mehta, C. Shakher, “High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells,” Appl. Opt., vol. 50, no. 34, pp. 6343-6351, 2011.
    [16] S. Ozharar, D. Akcan, L. Arda, “Determination of the refractive index and the thickness of double side coated thin films,” J. Optoelectron. Adv. Mater., vol. 18, no. 1-2, pp. 65-69, 2016.
    [17] M. Muth, R. P. Schmid, K. Schnitzlein, “Ellipsometric study of molecular orientations of Thermomyces lanuginosus lipase at the air-water interface by simultaneous determination of refractive index and thickness,” Colloids Surf. B, vol. 140, pp. 60-66, 2016.
    [18] H. G. Rhee, D. I. Kim, Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum., vol. 80, no. 7, pp. 073103, 2009.
    [19] J. A. Kim, J. W. Kim, T. B. Eom, J. Jin, C. S. Kang, “Vibration-insensitive measurement of thickness variation of glass panels using double-slit interferometry,” Opt. Express, vol. 22, no. 6, pp.6486-6494, 2014.
    [20] C. S. Liu, R. C. Song, S. J. Fu, “Design of a laser-based autofocusing microscope for a sample with a transparent boundary layer,” Appl. Phys. B, vol. 125, no. 11, 2019.
    [21] C. S. Liu, P. H. Hu, Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B, vol. 109, no. 2, pp. 259-268, 2012.
    [22] N. N. K. Chern, P. A. Neow, M. Ang, “Practical issues in pixel-based autofocusing for machine vision,” Proc. IEEE. ICRA., vol. 3, pp. 2791-2796, 2001.
    [23] L. Shih, “Autofocus survey: A comparison of algorithms,” Proc. SPIE, vol. 6502, pp. 90-100, 2007.
    [24] J. Jeon, I. Yoon, D. Kim, J. Lee, J. Paik, “Fully digital auto-focusing system with automatic focusing region selection and point spread function estimation,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1204-1210, 2010.
    [25] K. Koh, J. G. Kuk, B. Jin, W. Choi, N. I. Cho, “Autofocus method using dual aperture and color filters,” J. Electron. Imaging, vol. 20, no. 3, pp. 1-7, 2011.
    [26] Y. Fujishiro, T. Furukawa, S. Maruo, “Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography,” Opt. Express, vol. 28, no. 8, pp. 12342-12351, 2020.
    [27] 丘前恕,顯微照像的快速自動對焦技術,國立中央大學資訊工程研究所,2008。
    [28] C. Solomon, T. Breckon, Fundamentals of Digital Image Processing, UK: Wiley-Blackwell, 2011.
    [29] S. J. K. Pedersen, “Circular Hough Transform,” Aalborg University, Vision, Graphics, and Interactive Systems, 2007.
    [30] H. Yuen, J. Princen, J. Illingworth, J. Kittler, “A Comparative Study of Hough Transform Methods for Circle Finding,” Image Vis. Comput., vol. 8, no. 1, pp. 71-77, 1990.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE