簡易檢索 / 詳目顯示

研究生: 劉彥廷
Liu, Yen-Ting
論文名稱: 具干涉結構之摻鈮氧化釩熱阻式微感測器特性研究
Performance Investigation of Nb-Doped VOx Microbolometers with Interferometric
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 熱阻式感測器干涉結構摻鈮氧化釩薄膜響應度溫度電阻係數
外文關鍵詞: Interferometric, Nb-doped VOx thin film
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為具干涉結構之摻鈮氧化釩熱阻式微感測器的特性研究,針對兩方向優化元件,一為利用摻雜鈮元素於氧化釩感測層,藉此影響薄膜電特性,提升對溫度的靈敏性,並從實驗中探討鈮元素摻雜多寡,找出感測層最佳製程條件;二為元件上新增中心窗口,利用此設計減短元件後端製程蝕刻形成橋式懸浮結構所需時間,提升製程效率,最後將其應用在元件製程中。其中元件設計採用干涉結構可有效避免熱能經矽基板散失,減少熱散逸,提升元件響應度。
    本實驗以磁控式濺鍍系統製作摻鈮氧化釩薄膜,利用釩金屬靶與五氧化二鈮靶並通入氬氣與氧氣進行共濺鍍,調整濺鍍五氧化二鈮之時間控制摻雜量,獲得最佳條件摻雜鈮比例2.92%之摻鈮氧化釩的薄膜溫度電阻係數為2.55 %/oC,高於未摻雜之氧化釩薄膜的2.08 %/oC,且其室溫下電阻率為9.88 Ω-cm,符合紅外線焦平面之讀出積體電路(read-out integrated circuit, ROIC)製程需求,將結果應用在後續氧化釩熱阻式微感測器元件上。
    元件設計架構依序為薄金屬吸收層、感測層、適當中間空腔與最下方反射鏡加總,利用此結構形成的建設性干涉,提升對紅外線之吸收率。在元件製程後端添加中心蝕刻懸浮結構之窗口,將蝕刻空腔所需時間從4小時45分減少至2小時30分,提升製程效率,最後製作三種元件並進行特性分析,三種元件分別為氧化釩熱感元件、新增中心窗口之氧化釩熱感元件與新增中心窗口之摻鈮氧化釩熱感元件,其中新增中心窗口之摻鈮氧化釩熱感元件的響應度為812.78 kV/W,高於新增中心窗口之氧化釩熱感元件的響應度667.12 kV/W以及氧化釩熱感元件的響應度655.35 kV/W,使元件有較佳之感測特性。

    In this study, there are two ways to optimize the performance of VOx microbolometers. One is to make the Niobium (Nb) doped into the VOx films, letting the electrical properties of the VOx film be changed to enhance its sensitivity. Then, find out the best parameter for growing VOx:Nb films by varying the contents of Nb-doped. Another one is to add a central window to the device. The design is used to reduce the etching time from the back-end process and make it more efficient. Finally, the results are both applied to the process of bolometers with interferometric. At the input current of 1 μA, the responsivity, thermal time constant, thermal conductivity, IR absorbance, NEP and detectivity of the VOx:Nb microbolometer is 812.78 kV/W, 4.56 ms, 5.78×10-8 W/K, 62.24%, 3.54×10-10 W and 1.41×108 cmHz0.5W-1, respectively. Comparing with the responsivity of VOx microbolometers without a central window applied, it can be confirmed that the former have greater responsivity and more efficient process.

    摘要 II 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1前言 1 1.2 動機與目的 2 參考文獻 3 第二章 實驗原理介紹 5 2.1 干涉結構熱阻式感測器運作原理與類型 5 2.1.1 熱型感測器類型介紹 5 2.1.2熱阻式紅外線感測器感測機制分析 5 2.1.3 犧牲層技術介紹與選用 6 2.1.4 熱阻式感測器參數介紹 8 2.1.4.1 熱容 8 2.1.4.2 熱導 9 2.1.4.3 熱時間常數 9 2.1.4.4 溫度電阻係數 10 2.1.4.5 響應度 10 2.1.4.6 低頻雜訊與檢測度 12 2.2 元件吸收層之應用機制 12 2.2.1 吸收層材料選擇與原理 13 2.2.2 四分之一波長干涉結構 15 2.3 感測層特性介紹 16 2.3.1 感測層材料選擇 17 2.3.2 摻雜物選擇與目的 19 2.3.3 氧化釩摻雜鍍製方法 19 2.4 量測系統 21 2.4.1 表面高度量測儀 21 2.4.2 四點探針 21 2.4.3 X光光電子能譜儀 22 2.4.4 掃描式電子顯微鏡與化學定量分析 22 2.4.5 低掠角薄膜繞射分析 23 參考文獻 24 第三章 實驗流程規劃與製作步驟 40 3.1 元件光罩設計 41 3.2 元件製作流程 42 3.3 感測層薄膜沉積製程 50 3.4 電漿蝕刻懸浮結構時間比較 51 3.5 元件量測 51 3.5.1 溫度響應分析 52 3.5.2 響應度分析 52 3.5.3 頻率響應分析 53 3.5.4 熱導與電阻分析 54 3.5.5 雜訊與檢測度分析 54 第四章 實驗量測與結果探討 62 4.1有無摻雜之氧化釩感測層薄膜電性分析 62 4.1.1 未摻雜之氧化釩感測層製備條件 62 4.1.1.1氧化釩感測層溫度電阻變化分析 62 4.1.2 製備與分析摻鈮氧化釩感測層電溫度電阻變化 63 4.2 有無摻雜鈮之氧化釩薄膜鍵結分析 65 4.3 有無摻雜鈮之氧化釩薄膜結晶性分析 66 4.4 最佳化元件製程條件 67 4.4.1 不同塗佈轉速與犧牲層厚度分析 67 4.4.2 犧牲層蝕刻圖形化 68 4.4.3 電漿蝕刻元件懸浮結構時間比較 69 4.5 元件特性量測 69 4.5.1 溫度響應分析 69 4.5.2 響應度分析 70 4.5.3 頻率響應分析 71 4.5.4 熱導與電阻分析 71 4.5.5 吸收率分析 73 4.5.6 雜訊與檢測度分析 73 參考文獻 75 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來展望 95

    第一章
    [1] Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol., vol. 54, pp. 136-154, 2011.
    [2] M. Vollmer and K. P. Möllmann, “Infrared thermal imaging: fundamentals, research and applications, second edition,” Wiley-vch., Weinheim, Germany, 2017.
    [3] A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE., vol. 3182, pp. 14-25, 1997.
    [4] S. J. Wang, L. Lu and M. O. Lai, “Pyroelectric materials for dielectric bolometers,” Sci. Adv. Mater., vol. 3, pp. 794-810, 2011.
    [5] P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys., vol. 64, pp. 1339–1388, 2001.
    [6] A. Graf, M. Arndt, M. Sauer and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol., vol. 18, pp. R59-R75, 2007.
    [7] J. Schieferdecker, R. Quad, E. Holzenkämpfer and M. Schulze, “Infrared thermopile sensors with high sensitivity and very low temperature coefficient,” Sens. Actuator A-Phys., vol. 47, pp. 422-427, 1995.
    [8] R. P. Chasmar, W. H. Mitchell and A. Rennie, “Theory and performance of metal bolometers,” J. Opt. Soc. Am., vol. 46, pp.469-477, 1956.
    [9] J. C. Brasunas and B. Lakew, “High Tc superconductor bolometer with record performance,” Appl. Phys. Lett., vol. 64, pp. 777-778, 1994.
    [10] A. G. Unil Perera, “Bolometers,” InTech., London, United Kingdom, 2012.
    [11] C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A., vol. 27, pp. 956-961, 2009.
    [12] H. Alaboz, Y. Demirhan, H. Yuce, G. Aygun and L. Ozyuzer, “Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications,” Opt Quant Electron., vol. 238, pp. 1-10, 2017.
    [13] M. Poyraz, K. Gorgulu, Z. Sisman, M. Y. Tanrikulu and A. K. Okyay, “LWIR all-atomic layer deposition ZnO bilayer microbolometer for thermal imaging,” Opt. Eng., vol. 56, pp. 037106-1- 037106-5, 2017.
    [14] B. Wang, J. Lai, H. Li, H. Hu and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol., vol. 57, pp. 8-13, 2013.
    [15] K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado and A. Sawa, “Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2 films,” Jpn. J. Appl. Phys., vol 53, p. 071102, 2014.
    第二章
    [1] T. Kanno, M. Saga, “Uncooled infrared focal plane array having 128 ×128 thermopile detector elements,” Proc. SPIE., vol. 2269, pp. 452-459, 1994.
    [2] H. Zhao, W. Ren and X. Liu, “Design and fabrication of micromachined pyroelectric infrared detector array using lead titanate zirconate (PZT) thin film,” Ceram. Int., vol. 43, pp. 464-469, 2017.
    [3] F. Niklaus, C. Vieider and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays – a review,” Proc. SPIE., vol. 6836, p. 68360D, 2007.
    [4] B. Wang, J. Lai, H. Li, H. Hu and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol., vol. 57, pp. 8-13, 2013.
    [5] N. Shen, J. Yu and Z. Tang, “An uncooled infrared microbolometer array for low-cost applications,” IEEE Photonic. Technol. Lett., vol. 27, pp. 1247-1249, 2015.
    [6] J. S. Shie and P. K. Weng, “Design considerations of metal-film bolometer with micromachined floating membrane,” Sens. Actuator. A-Phys., vol. 33, pp. 183-189, 1991.
    [7] P. Capper and C. T. Elliott, “Infrared detectors and emitters: materials and devices,” Springer., Berlin, Germany, 2001.
    [8] W. G. Baer, T. Hull, K. D. Wise, K. Najafi and K. D. Wise, “A multiplexed silicon infrared thermal imager,” IEEE International Solid-State Circuits Conference, vol. 91, pp. 631-634, 1991.
    [9] B. Liu, Z. Lv and Z. Li, “A surface micromachining process utilizing dual metal sacrificial layer for fabrication of RF MEMS switch,” IEEE Nano/Micro Eng. Mol. Syst., pp. 620-623, 2010.
    [10] R. T. Howe, “Surface micromachining for microsensors and microactuators,” J. Vac. Sci. Technol. B., vol. 6, pp. 1809-1813, 1988.
    [11] A. Hierlemann and H. Baltes, “CMOS-based chemical microsensors,” Analyst., vol. 128, pp. 15-28, 2003.
    [12] J. A. Kreuz, A. L. Endrey, F. P. Gay and C. E. Sroog, “Studies of thermal cyclizations of polyamic acids and tertiary amine salts,” J. Polym. Sci. Pol. Chem., vol. 4, pp. 2607-2616, 1966.
    [13] A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French and P. M. Sarro, “Polyimide sacrificial layer and novel materials for post-processing surface micromachining,” J. Micromech. Microeng., Vol.12, pp. 385-389, 2002.
    [14] G. Li, N. Yuan, J. Li and X. Chen, “Thermal simulation of micromachined bridge and self-heating for uncooled VO2 infrared microbolometer,” Sens. Actuator. A Phys., vol. 126, pp. 430-435, 2006.
    [15] F. Niklaus, A. Decharat, C. Jansson and G. Stemme, “Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure,” Infrared Phys. Technol., vol. 51, pp. 168-177, 2008.
    [16] E. M. Smith, J. C. Ginn, A. P. Warren, C. J. Long, D. Panjwani, R. E. Peale and D. J. Shelton, “Linear bolometer array using a high TCR VOx-Au film,” Proc. SPIE, vol. 9070, p. 90701Z, 2014.
    [17] H. Wang and X. Yi, S. Chen, “Low temperature fabrication of vanadium oxide films for uncooled bolometric detectors,” Infrared Phys. Technol., vol. 47, pp. 273-277, 2006.
    [18] R. K. Bhan, R. S. Saxena, C. R. Jalwania and S.K. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J., vol. 59, pp. 580-589, 2009.
    [19] H. Alaboz, Y. Demirhan, H. Yuce, G. Aygun and L. Ozyuzer1, “Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications,” Opt. Quantum Electron., vol. 238, pp. 1-10, 2017.
    [20] G. M. Gouda and C. L. Nagendra, “Structural and electrical properties of mixed oxides of manganese and vanadium: a new semiconductor oxide thermistor material,” Sens. Actuator A-Phys., vol. 155, pp. 263-271, 2009.
    [21] M. Abdel-Rahman, N. Al-Khalli, M. F. Zia, M. Alduraibi, B. Ilahi, E. Awad and N. Debbar, “Fabrication and design of vanadium oxide microbolometer,” AIP Conf. Proc., vol. 1809, p. 020001, 2017.
    [22] R. A. Wood, “Uncooled microbolometer infrared sensor arrays”, Inf. Detectors and Emitters:Mater. Devices., pp. 149-175, 2001.
    [23] E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer optical performance using NiCr and Ti thin-films,” IEEE Photonics Technol. Lett., vol. 27, pp. 462-465, 2015.
    [24] C. HIsusim, “Infrared absorption of thin metal films,” J. Opt. Soc. Am., vol. 44, pp. 188-191, 1954.
    [25] F. Alves, A. Karamitros, D. Grbovic, B. Kearney and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng., vol. 51, p. 063801, 2012.
    [26] B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys., vol. 39, pp. 165-170, 1986.
    [27] N. Richard, “Optical properties of multilayer structures,” Eur. Phys. J. B., vol. 17, pp. 11-14, 2000
    [28] G. Gerlach, “Bio and nano packaging techniques for electron devices,” Springer, Berlin, Germany, 2012.
    [29] M. Born, E. Wolf and A. B. Bhatia, “Principles of optics,” 7th, Cambridge university, 1999.
    [30] S.Arora, N. Paras, A. Gurjar, R. Narwal, B. Prasad and D. Kumar, “Design and simulation of uncooled microbolometer using coventorware,” AIP Conf. Proc., vol. 1724, p. 020124, 2016.
    [31] P. A. Silberg, “Infrared absorption of three-layer films”, J. Opt. Soc. Amer., vol. 47, pp. 575-578, 1957.
    [32] K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys., vol. 34, pp. 379-387, 1993.
    [33] S. P. Langley, “The bolometer and radiant energy,” Proceedings of the American Academy of Arts and Sciences, vol. 16, pp342, 1881.
    [34] J. E. Ralph, “A positive temperature coefficient thermistor bolometer,” Inf. Phys., vol. 22, pp. 245-249, 1982.
    [35] X. Yi, C. Chen, L. Liu, Y. Wang, B. Xiong, H. Wang and S. Chen, “A new fabrication method for vanadium dioxide thin films deposited by ion beam sputtering,” Infrared Phys. Technol., vol. 44, pp. 137-141, 2003.
    [36] A. Voshell, N. Dhar and M. M. Rana, “Materials for microbolometers: vanadium oxide or silicon derivatives,” Proc. SPIE., vol. 10209, p. 102090, 2017.
    [37] R. P. Chasmar, W. H. Mitchell and A. Rennie, “Theory and performance of metal bolometers,” J. Opt. Soc. Am., vol. 46, pp.469-477, 1956.
    [38] J. C. Brasunas and B. Lakew, “High Tc superconductor bolometer with record performance,” Appl. Phys. Lett., vol. 64, pp. 777-778, 1994.
    [39] A. G. Unil Perera, “Bolometers,” InTech., London, United Kingdom, 2012.
    [40] C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A., vol. 27, pp. 956-961, 2009.
    [41] N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, et al, “Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy,” Nat. Phys., vol. 9, pp. 661-666, 2013.
    [42] A. A. Akande, K. E. Rammutla, T. Moyo, S. E. Osman, S. S. Nkosi, C. J. Jafta and B. W. Mwakikuga, “Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides,” J. Magn. Magn. Mater., vol. 375, pp. 1-9, 2015.
    [43] N. Bahlawane and D. Lenoble, “Vanadium oxide compounds: structure, properties, and growth from the gas phase,” Chem. Vap. Deposition., vol. 20, pp. 299-311, 2014.
    [44] H. Katzke, P. Tolédano and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B., vol. 68, p. 024109, 2003.
    [45] M. Kang, I. Kim, S. W. Kim, J. W. Ryu and H. Y. Park, “Metal-insulator transition without structural phase transition in V2O5 film,” Appl. Phys. Lett., vol. 98, p. 131907, 2011.
    [46] M. S. B. de Castro, C. L. Ferreira and R. R. de Avillez, “Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature,” Infrared Phys. Technol., vol. 60, pp. 103-107, 2013.
    [47] Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi and Z. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys., vol. 114, p. 113509, 2013.
    [48] F. Alves, A. Karamitros, D. Grbovic, B. Kearney and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng., vol. 51, p. 063801, 2012.
    [49] J. Brockman, N. P. Aetukuri, T. Topuria, M. G. Samant, K. P. Roche and S. S. P. Parkin, “Increased metal-insulator transition temperatures in epitaxial thin films of V2O3 prepared in reduced oxygen environments,” Appl. Phys. Lett., vol. 98, p. 152105, 2011.
    [50] A. K. Kundu and K. S. R. Menon, “Thickness-dependent evolution of structure, electronic structure, and metal-insulator transition in ultrathin V2O3(0001) films on Ag(001),” Surf. Sci., vol. 659, pp. 43-51, 2017.
    [51] Y. H. Hana, K. T. Kima, N. Chi-Anh, H. J. Shin, I. H. Choi and S. Moon, “Fabrication and characterization of bolometric oxide thin film based on vanadium-tungsten alloy,” Sens. Actuator A-Phys., vol. 123-124, pp. 660-664, 2005.
    [52] H. Y. Lee, C. L. Wu, C. H. Kao, C. T. Lee, S. F. Tang, W. J. Lin, et al, “Investigated performance of uncooled tantalum-doped VOx floating-type microbolometers,” Appl. Surf. Sci., vol. 354, pp. 106-109, 2015.
    [53] S. Wang, S. F. Yu, M. Lu, M. Z. Liu and L. Zuo, “Atomic layer-deposited titanium-doped vanadium oxide thin films and their thermistor applications,” J. Electron. Mater., vol. 46, pp. 2153-2157, 2017.
    [54] F. Cardillo, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol. A., vol. 2, pp. 1509-1512, 1984.
    [55] N. Yuan, J. Li and C. Lin, “Valence reduction process from sol-gel V2O5 to VO2 thin films,” Appl. Surf. Sci., vol. 191, pp. 176-180, 2002.
    [56] D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, et al, “Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films,” J. Appl. Phys., vol. 113, p. 043707, 2013.
    [57] D. H. Kim and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett., vol. 65, pp. 3188-3190, 1994.
    [58] P. Jin and S. Tanemura, “Relationship between transition temperature and x in V1-xWxO2 films deposited by dual-target magnetron sputtering,” Jpn. J. Appl. Phys., vol. 34, pp. 2459-2460, 1995.
    [59] R. T. Kivaisi and M. Samiji, “Optical and electrical properties of vanadium dioxide films prepared under optimized RF sputtering conditions,” Sol. Energy Mater. Sol. Cells., vol. 57, pp. 141-152, 1999.
    第四章
    [1] S. H. Chen, J. J. Lai, J. Dai, H. Ma, H. C. Wang and X. J. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express., vol. 17, pp. 24153-24161, 2009.
    [2] M. Kang, I. Kim, S. W. Kim, J. W. Ryu and H. Y. Park, “Metal-insulator transition without structural phase transition in V2O5 film,” Appl. Phys. Lett, vol. 98, p. 131907, 2011.
    [3] R. H. Chen, Y. L. Jiang and B. Z. Li, “Influence of Post-Annealing on
    Resistivity of VOX Thin Film,” IEEE Electron Device Lett., vol. 35, pp. 780-782, 2014.
    [4] J. Li and N. Yuan, “Temperature sensitivity of resistance of VO2 polycrystalline films formed by modified ion beam enhanced deposition,” Appl. Surf. Sci., vol. 233, pp. 252-257, 2004.
    [5] K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys., vol. 34, pp. 379-387, 1993.
    [6] G. Turban and M. Rapeaux, “Dry etching of polyimide in O2-CF4 and O2-SF6 plasmas,” J. Electrochem. Soc., vol. 130, pp. 2231-2236, 1983.
    [7] E. Hryha, E. Rutqvist and L. Nyborg, “Stoichiometric vanadium oxides studied by XPS,” Surf. Interface Anal., vol. 44, pp. 1022-1025, 2012.
    [8] B. R. King, H. C. Patel, D. A. Gulino and B. J. Tatarchuk, “Kinetic measurements of oxygen dissolution into niobium substrates: In situ X-ray photoelectron spectroscopy studies,” Thin Solid Films, vol. 192, pp. 351-369, 1990.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE