| 研究生: |
謝承蓉 Hsieh, Cheng-Jung |
|---|---|
| 論文名稱: |
銀表面上不同尺寸銀奈米立方體應用於表面增強拉曼散射及其分析物檢測 Silver Nanocubes with Various Sizes atop the Massed Silver Surface and its Application for Analyte Detection via Surface Enhanced Raman Scattering |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 表面增強拉曼散射 、銀奈米立方體 、表面電漿共振 、時域有限差分法 |
| 外文關鍵詞: | Surface enhanced Raman scattering (SERS), silver nanocubes, surface plasmon resonance, finite difference time-domain |
| 相關次數: | 點閱:229 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究包含兩部分,第一部分為利用多元醇還原法合成不同尺寸分布之銀奈米立方體,以自組裝單分子層方式置放其於銀表面做為拉曼增顯基板,透過不同波長的拉曼激發光源分別檢測不同待測物(Rhodamine 6G、crystal violet 與 adenine),了解改變銀奈米立方尺寸對於拉曼增顯效果差異。藉由紫外光/可見光光譜分析得知不同尺寸銀奈米立方體之表面電漿共振波長存在所對應特定激發光波長,搭配不同待測物之吸收波長存在所對應特定激發光波長,進而達到最大化拉曼增顯效應。
第二部分為利用模擬方式了解銀奈米立方體於銀表面於固定激發光波長下電場分布情形。由電場分布結果可瞭解,利用自組裝單分子層技術所得之拉曼增顯基板,主要增顯機制來自於銀奈米立方體與銀表面間所產生的強大感應電場。由於銀奈米立方體尺寸不同造成表面電漿共振波長差異,致使在固定激發光波長下產生不同的電場能量分布,顯示銀奈米立方體之尺寸具備選擇性以達到最大之電場能量分布情形。最後比較增顯基板之紫外光/可見光光譜與模擬計算表面電漿共振波長圖譜,確認兩者波長位置相符。
本研究提出銀奈米立方體存在所對應之特定波長,搭配待測物存在所對應之特定波長,可達到最大化拉曼增顯效應;透過模擬分析電場能量分布進一步探討電場增顯機制,歸納建議未來可先藉由模擬方式推測實驗製備之拉曼增顯基板的最適激發光源。
In this research, we experimentally and computationally study surface enhanced Raman scattering (SERS) substrates with different size of silver nanocubes (AgNCs) for the detection different analytes. Silver nanocubes (AgNCs) with different sizes are successfully prepared by a facile the polyol process with ethylene glycol as a solvent and a reducing agent. Robust SERS substrates with enormous hotspots can be fabricated by assembling AgNCs on the silver surface via 1,2-ethanedithiol monolayer as the spacer. The SERS efficiencies are further evaluated by using Rhodamine 6G (R6G), crystal violet (CV) and adenine as Raman analytes. It’s demonstrated that the intensities of SERS signals are related to the sizes of the AgNCs at respective excitation wavelengths. The experiment results of the size-dependent surface plasmon resonance properties of the AgNCs are compared with theoretical calculations. Through finite difference time-domain (FDTD) numerical simulation, we find that the electric field enhancements are sensitive to the sizes of the AgNCs.
1. Raman, C. V., The Raman effect-inelastic insight. Nature, 121, p.501, (1928).
2. Fleischmann, M.; Hendra, P. J. and Mcquillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26(2), p.163, (1974).
3. Jeanmaire, D. L. and Van Duyne, R. P., Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem., 84(1), p.1, (1977).
4. Albrecht, M. G. and Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 99(15), p.5215, (1977).
5. Moore, C. B., Laser excitation of Raman scattering from adsorbed molecules on electrode surfaces. Chemical and Biochemical Applications of Lasers, 4(101), (1979).
6. Lombardi, J. R.; Birke, R. L.; Lu, T. and Xu, J., Charge‐transfer theory of surface enhanced Raman spectroscopy Herzberg-Teller contributions. J. Chem. Phys, 84(8), p.4174, (1986).
7. Kerker, M.; Wang, D. S. and Chew, H., Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl. Opt., 19(24), p.4159, (1980).
8. Wang, D. S. and Kerker, M., Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B, 24(4), p.1777, (1981).
9. Xu, H.; Aizpurua, J.; Kall, M. and Apell, P., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering. Phys. Rev. E, 62(3), p.4318, (2000).
10. 郭清癸; 黃俊傑 and 牟中原, 金屬奈米粒子的製造. 物理雙月刊, 廿三卷(六期), p.614, (2001).
11. Hu, J.; Odom, T. W. and Lieber, C. M., Chemistry and physics in one dimension synthesis and properties of nanowires and nanotubes. Acc. Chem. Res., 32(5), p.435, (1999).
12. Mafune, F.; Kohno, J.; Takeda, Y.; Kondow, T. and Sawabe, H., Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B, 104(35), p.8334, (2000).
13. 陳信甫. 銅奈米粒子的探討硫醇吸附的影響與金銅合金奈米空球的製備. 國立成功大學, 台南市, 2003.
14. 林信宏. 水相界面活性劑系統製備貴金屬奈米粒子之研究. 國立成功大學, 台南市, 2002.
15. Njoki, P. N.; Lim, I. S.; Mott, D.; Park, H.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J. and Zhong, C., Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C, 111(40), p.14664, (2007).
16. Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S. and Anis, H., Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys. Chem. C, 115(5), p.1403, (2011).
17. Lin, W. C.; Liao, L. S.; Chen, Y. H.; Chang, H. C.; Tsai, D. P. and Chiang, H. P., Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics, 6(2), p.201, (2010).
18. Greeneltch, N. G.; Blaber, M. G.; Schatz, G. C. and Van Duyne, R. P., Plasmon-sampled surface-enhanced Raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (λex=1064 nm) studies. J. Phys. Chem. C, 117(6), p.2554, (2013).
19. 蔡博如. 大面積銀表面上的銀奈米立方體之尺寸效應於表面增強拉曼散射. 國立成功大學, 台南市, 2014.
20. Radziuk, D.; Shchukin, D. G.; Skirtach, A.; Mohwald, H. and Sukhorukov, G., Synthesis of silver nanoparticles for remote opening of polyelectrolyte microcapsules. Langmuir, 23(8), p.4612, (2007).
21. Kim, T.; Canlier, A.; Kim, G. H.; Choi, J.; Park, M. and Han, S. M., Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Interfaces, 5(3), p.788, (2013).
22. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J. and Xia, Y., Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem. Eur. J., 16(33), p.10234, (2010).
23. Yang, Y.; Zhong, X. L.; Zhang, Q.; Blackstad, L. G.; Fu, Z. W.; Li, Z. Y. and Qin, D., The role of etching in the formation of Ag nanoplates with straight, curved and wavy edges and comparison of their SERS properties. Small, 10(7), p.1430, (2014).
24. Xiong, Y. and Xia, Y., Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv. Mater., 19(20), p.3385, (2007).
25. Rycenga, M.; Camargo, P. H.; Li, W.; Moran, C. H. and Xia, Y., Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J. Phys. Chem. Lett., 1(4), p.696, (2010).
26. Rycenga, M.; Kim, M. H.; Camargo, P. H. C.; Cobley, C.; Li, Z. Y. and Xia, Y., Surface-enhanced Raman scattering comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. J. Phys. Chem. A, 113(16), p.3932, (2009).
27. Cheng, S. C.; Wen, T. C. and Lan, Y. C., Plasmonic cavities derived from silver nanoparticles atop a massed silver surface for surface enhancement Raman scattering. RSC Adv., 4(84), p.44457, (2014).
28. Duan, G.; Cai, W.; Luo, Y.; Li, Z. Y. and Li, Y., Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect. Appl. Phys. Lett., 89(21), p.211905, (2006).
29. Liu, Y.; Yu, C. and Sheu, S., Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates. J. Mater. Chem., 16(35), p.3546, (2006).
30. Abu Hatab, N. A.; Oran, J. M. and Sepaniak, M. J., Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and manotransfer printing. ACS Nano, 2(2), p.377, (2008).
31. Liu, X.; Cao, L.; Song, W.; Ai, K. and Lu, L., Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces, 3(8), p.2944, (2011).
32. Wang, Y.; Guo, S.; Chen, H. and Wang, E., Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering. J. Colloid Interface Sci., 318(1), p.82, (2008).
33. Feng, F.; Zhi, G.; Jia, H. S.; Cheng, L.; Tian, Y. T. and Li, X. J., SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology, 20(29), p.295501, (2009).
34. Li, M.; Cushing, S. K.; Zhang, J.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D.; Liu, Y. and Wu, N., Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano, 7(6), p.4967, (2013).
35. Hu, Y.; Feng, S.; Gao, F.; Li Chan, E. C.; Grant, E. and Lu, X., Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chem., 176, p.123, (2015).
36. Wood, R. W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 4(21), p.396, (1902).
37. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am., 31(3), p.213, (1941).
38. Hessel, A. and Oliner, A. A., A new theory of Wood's anomalies on optical gratings. Appl. Opt., 4(10), p.1275, (1965).
39. Ritchie, R. H., Plasma losses by fast electrons in thin films. Phys. Rev., 106(5), p.874, (1957).
40. 吳民耀 and 劉威志, 表面電漿子理論與模擬. 物理雙月刊, 廿八卷(二期), p.486, (2006).
41. 邱國斌 and 蔡定平, 金屬表面電漿簡介. 物理雙月刊, 廿八卷(二期), p.472, (2006).
42. Stegeman, G. I.; Wallis, R. F. and Maradudin, A. A., Excitation of surface polaritons by end-fire coupling. Opt. Lett., 8(7), (1983).
43. Kim, H. C. and Cheng, X., SERS-active substrate based on gap surface plasmon polaritions. Opt. Express, 17(20), p.17234, (2009).
44. Ikeda, K.; Suzuki, S. and Uosaki, K., Crystal face dependent chemical effects in surface-enhanced Raman scattering at atomically defined gold facets. Nano Lett., 11(4), p.1716, (2011).
45. Zhao, Y.; Chen, G.; Du, Y.; Xu, J.; Wu, S.; Qu, Y. and Zhu, Y., Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Nanoscale, 6(22), p.13754, (2014).
46. Ciracì, C.; Chen, X.; Mock, J. J.; McGuire, F.; Liu, X.; Oh, S. H. and Smith, D. R., Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers. Appl. Phys. Lett., 104(2), p.023109, (2014).
47. 鄭瑋銘. 均勻與非均勻網格於轉換光學之光電模擬研究. 國立成功大學, 台南市, 2011.
48. Yee, K. S., Numerical solution of initial boundary value problems involving Maxell's equations in isotropic media. IEEE Trans. Antennas. Propag., 14(3), p.302 (1966).
49. Taflove, A., Computational electrodynamics: the finite-difference time-domain method. Artech House, (2005).
50. Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2), p.185, (1994).
51. Cheng, S. C. and Wen, T. C., Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1,2-ethanedithiol monolayer as linkage and ultra-thin spacer. Mater. Chem. Phys., 143(3), p.1331, (2014).
52. Samal, A. K.; Polavarapu, L.; Rodal Cedeira, S.; Liz Marzan, L. M.; Perez Juste, J. and Pastoriza Santos, I., Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir, 29(48), p.15076, (2013).
53. Lassiter, J. B.; McGuire, F.; Mock, J. J.; Ciraci, C.; Hill, R. T.; Wiley, B. J.; Chilkoti, A. and Smith, D. R., Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett., 13(12), p.5866, (2013).