簡易檢索 / 詳目顯示

研究生: 蔡佩勳
Tsai, Pei-Shiun
論文名稱: 波前分割干涉儀的分析
Analysis of Wavefront-splitting Interferometers
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 齊次座標轉換矩陣歪斜光線追蹤波前分割干涉儀
外文關鍵詞: Homogeneous coordinate transformation matrix, Skew ray tracing, Wavefront-splitting interferometers
相關次數: 點閱:214下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以齊次座標轉換矩陣,將光學系統模型以矩陣方式,建構完整的光線追蹤理論。在一般情況下,光學系統邊界面的光程長和光線可以使用歪斜光線追蹤方法計算,而光程長和光線的導數可用有限差分的近似方法或差分方法求得。然而光學系統的折、反射方程具有高次非線性,從而推導計算系統變數時,總是繁瑣且相當費時,因此以實驗室發展的方法,從推算平面邊界的光路徑幾何長度改變量,進而以求得光源與系統變數的改變對光程差所造成的變化量,且以此方法對菲涅爾雙面鏡與雙稜鏡波前分割干涉儀進行靈敏度分析,並以程式驗證以及評估每個變數的變化對系統所造成的影響。

    This study constructs a new method for skew ray tracing by using homogeneous coordinate transformation matrix. The optical systems model matrix to construct a complete theory of ray tracing. In general, the optical path length and ray at the boundary surface in an optical system can be computed using a skew-ray tracing approach. The derivatives of Optical Path Length and ray can be obtained using either Finite Difference approximation methods or differential methods. However, the refraction and reflection equations in optical systems have a high degree of nonlinearity, and thus computing the derivative quantities is time-consuming and cumbersome. Therefore, a mathematical method developed by determining the Jacobin matrix of OPL with respect to system variable such that the change of OPL due to the changes of system variables. The proposed method applied in some wavefront-splitting interferometers, examples include the Fresnel double mirror and Fresnel’s prism.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 齊次座標轉換 4 1.4 平面邊界的光線追蹤 10 1.5 光程長對系統變數的Jacobian矩陣 16 1.5.1平面邊界上OPL 的Jacobian矩陣 17 1.5.2任意兩入射點間OPL的Jacobian矩陣 19 1.6 本文架構 23 第二章 光的干涉原理 24 2.1 干涉基礎理論 24 2.1.1兩點光源的干涉 24 2.1.2干涉條紋的可見度 28 2.2 雙光束干涉法 29 2.2.1波前分割干涉 29 2.2.2振幅分割干涉 31 2.3 光的相干性(Coherence) 36 2.3.1時間相干性 37 2.3.2空間相干性 40 第三章 菲涅爾雙面鏡干涉分析 47 3.1 干涉原理 48 3.2 光源位置與面鏡傾角 50 3.3 平面邊界光線追蹤 56 3.4 系統變數分析 65 第四章 菲涅爾雙稜鏡干涉分析 68 4.1 干涉原理 68 4.2 光學系統的建模 72 4.3 平面邊界光線追蹤 73 4.4 系統變數分析 80 第五章 結論與未來展望 82 5.1 結論 82 5.2 未來展望 83 參考文獻 84

    [1]D. C. Su, M. H. Chiu and C. D. Chen "A heterodyne interferometer using an electro-optic modulator for measuring small displacements," J. Opt., Vol. 27, 19-24, (1996).
    [2]S. Hosoe, "Laser interferometric system for displacement measurement with high precision," Nanotechnology, Vol.2, 88-95, (1991).
    [3]G. Li and Y. Fainman, "Analysis of the wavelength-to-depth encoded interference microscopy for three-dimensional imaging,"Optical Engineering, Vol. 41, 1281-1288, (2002).
    [4]T. Fukano and I. Yamaguchi, "Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope," Optics Letters, Vol. 21, Issue 23, 1942-1944, (1996).
    [5]S. Topcu, L. Chassagne, Y. Alayli, P. Juncar, " Improving the accuracy of homodyne Michelson interfermometers using polarisation state measurement techniques," Optics Communications Vol. 247, 133-139, (2005).
    [6]F. C. Demarest, "High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics," Measurement Science and Technology, Vol. 9, 1024-1030, (1998).
    [7]J. Y. Lee, H. Y. Chen, C. C. Hsu, C. C. Wu, "Heterodyne interferometer for measurement of in-plane displacement with subnanometer resolution ," Proc. of SPIE Vol. 6280, 62800J, (2006).
    [8]J. C. Wyant, "White Light Interferometry," International Society for Optics and Photonics, (2002).
    [9]M. Hernández, A. Juárez, R. Hernández, "Interferometric thickness determination of thin metallic films," Superficies y Vacío 9, 283-285, (1999).
    [10]P. Sandoz and G. Tribillon, "Profilometry by Zero-order Interference Fringe Identification", Journal of Modern Optics, Vol. 40, No. 9, 1691-1700, (1993).
    [11]J. Dong, R. Lu, Y. Li, and K. Wu, "Automated determination of best focus and minimization of optical path differencein Linnik white light interferometry," Applied Optics, Vol. 50, 5861-5871, (2011).
    [12]W. Lyda, M. Gronle, D. Fleischle, F. Mauch and W. Osten, "Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy, " Measurement Science and Technology, Vol. 23, No. 5, (2012).
    [13]T. Fukano and I. Yamaguchi, "Geometrical cross-sectional imaging by a heterodyne wavelength-scanning interference confocal microscope, " Optics Letters, Vol. 25, No. 8, 548-550, (2000).
    [14]D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, "Step-height measurement by means of a dual-frequency interferometric confocal microscope, " Applied Optics, Vol. 43, No. 7, (2004).
    [15]J. Kross, "Differential ray tracing formulae for optical calculations: principles and applications," 1988 Intl Congress on Optical Science and Engineering. International Society for Optics and Photonics, 1989.
    [16]Shi, Renhu, and J. Kross, "Differential ray tracing for optical design," Proc. SPIE, Vol. 3737, 149-160,(1999).
    [17]F. L. Litvin, Therory of Gearing, (NASA Reference Publication,1989).
    [18]J. D. Foley, A. V. Dam, S. K. Feiner and J. F. Hughes, Computer Graphics Principles and Practices (2nd Edition, Addision-Wesley Publishing Company, 1981).
    [19]R. P. Paul, Robot Manipulators-Mathematics (Programming and Control, MIT press, Cambridge, Mass., 1982).
    [20]C. H. Wu, "Robot Accuracy Analysis Based on Kinematics," IEEE Journal of Robotics and Automation, RA-2/3, 171-179, (1986).
    [21]J. Denavit and R. S. Hartenberg, "A Kinematic Notation for Lower Pair Mechanisms Based on Matrices," Transactions of the ASME Journal of applied mechanics 77, 215-221, (1955).
    [22]J. J. Uicker, "On the Dynamic Analysis of Spatial Linkages Using 4x4 Matrices," Dissertation for Doctor of Philosophy, Northwestern University, Evanston, ILL., Aug. 1965.
    [23]P. D. Lin and W. Wu, "Determination of second-order derivatives of a skew-ray with respect to the variables of its source ray in optical prism systems, " J. Opt. Soc. Am. A 28, 1600-1609, ( 2011).
    [24]P. D. Lin and C. Y. Tsai, "First order gradients of skew rays of axis-symmetrical optical systems," J. Opt. Soc. Am. A, 24(3), 776-784, (2007).
    [25]P. D. Lin and C. Y. Tsai, "General method for determining the first order gradients of skew-rays of optical systems with non-coplanar optical axes," Applied Physics B - Lasers and Optics 91, 621–628, (2008).
    [26]T. Suzuki and I. Uwoki, "Differential Method for Adjusting the Wave-Front Aberrations of a Lens System," J. Opt. Soc. Am., vol. 49, pp. 402-402, (1959).

    下載圖示 校內:2018-07-26公開
    校外:2018-07-26公開
    QR CODE