簡易檢索 / 詳目顯示

研究生: 張博威
Chang, Po-Wei
論文名稱: 具多重負頻帶之彈性超材料數值模擬
Numerical Simulation of Elastic Metamaterials with Multiple Negative Bands
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 彈性超材料負頻散關係等效參數雙負材料
外文關鍵詞: elastic metamaterials, negative dispersion, effective parameters, bi-negative material
相關次數: 點閱:105下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年不少學者投入彈性超材料中負等效質量密度、負等效體積模數、負等效剪力模數等設計及應用相關研究。為了使彈性超材料發揮更佳的過濾向量波傳遞特性,本文將先介紹一些基本理論、等效參數公式以及波傳特性間的探討,接著再根據上述理論關係式利用有限元素軟體COMSOL數值分析模擬,其中我們先分析一僅使用三種自然界材料就具備雙負頻帶彈性超材料晶格系統,其頻散結構圖會出現雙負頻帶,且內質量結構之運動模態多變,晶格內會出現負的等效參數,同時建立一連體系統來驗證波傳的預測及分析,另外我們調整晶格內部幾何來產生一具有三負頻帶彈性超材料晶格系統,同樣分析其晶格內部特性,其頻散結構圖會出現新的第三負頻且整體頻散結構圖中可使用頻寬變大,而在第三負頻區間會產生新的塗料層旋轉共振運動模態,同時此三負頻區間會出現超異向性體、類流體、類不可壓縮體的濾波功能特性,因此本文所提出的模型有效地增加濾波的頻寬範圍及濾波的功能特性。

    The objective of this work is to design elastic metamaterials that can behave effectively as an medium with negative mass density and negative elastic modulus. Two geometric configurations of periodic array of unit cell, made of three constituent materials, that can achieve the bi-negative property, are proposed in this thesis. We utilize finite finite element methods to study the wave propagation characteristics, and to derive the effective parameters of the periodic array. In our first demonstration, an elastic metamaterial lattice system with double negative dispersion bands is achieved for certain frequency range. We demonstrate that this internal microstructure can give rise to particular resonance modes leading to negative effective parameters. In addition, by adjusting the geometriic dimension of unit cell, a second metamaterial model with three negative bands is proposed. Our numerical result confirms that the dispersion diagram can actually induce an additional negative band, that is associated to rotational resonance. Such resonant mode may result in negative effective shear modulus. The proposed model can have applications in the wave-filtering and other novel applications of practical interest.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1文獻回顧 1 1.2 研究動機 4 1.3 論文簡介 4 第二章 彈性波傳理論 6 2.1晶格內彈性波傳理論 6 2.2布洛赫定理(Bloch’s theorem)與週期性邊界條件 13 2.3布里淵區(Brillouin zone)之簡介 14 第三章 等效彈性參數與均質理論 18 3.1超材料晶格之等效彈性參數理論 18 3.2平均值定理 20 3.3波傳特性探討 30 第四章 雙負頻帶彈性超材料之有限元素模擬 36 4.1模型簡化概念 36 4.2數值模擬之參數設定介紹 37 4.3單位晶格之頻散圖及運動行為分析 40 4.4單位晶格之等效參數分析 43 4.5晶格連體系統之波傳模擬與分析 48 4.6結果與討論 53 第五章 三負頻帶彈性超材料之有限元素模擬 54 5.1數值模擬之參數設定介紹 54 5.2單位晶格之頻散圖及運動行為分析 56 5.3單位晶格之等效參數分析 59 5.4晶格連體系統之波傳模擬與分析 63 5.5負頻區間探討 67 第六章 結論與未來展望 70 6.1結論 70 6.2未來展望 71 參考文獻 72

    參考文獻
    Baker-Jarvis, J. V., Vanzura, E. J. and Kissick, W. A., Improved Technique for Determining Complex Permittivity with the Transmission Reflection Method, IEEE Trans microwave theory tech 38, pp.1096-1103(1990)

    Chan, C. T., Li, J. and Fung, K. H., On extending the concept of double negativity to acoustic waves, J. Zhejiang Univ-SC A 7, pp.24-28 (2006).

    Chen, H., Chan, C. T. and Sheng, P., Transformation optics and metamaterials, Nat.Mater. 9, pp.387-396 (2010)

    Cheng, Y., Xu, J. Y. and Liu, X. J., One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Phys. Rev. B 77, 045134 (2008).

    Chui, S. and Lin, Z., Long-wavelength behavior of two dimensional photonic crystals, Phys. Rev. E 78, pp.065601 (2008).

    Cummer, S. A. and Schurig, D., One path to acoustic cloaking, New J. Phys. 9, pp.45-52 (2007).

    Ding, Y., Liu, Z. and Qiu, C., Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett. 99, 093904 (2007).

    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater. 5, pp.452-456 (2006).
    Huang, G. L. and Sun, C. T., Band gaps in a multiresonator acoustic metamaterial, J. Vib. Acoust. 132, 031003-1 (2010).

    Huang, H. H., Sun, C. T. and Huang, G. L., On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci. 47, pp.610-617 (2009).

    Huang, H. H. and Sun, C. T., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philos. Mag. 91, pp.981-996 (2011).

    Huang, H. H. and Sun, C. T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New J. Phys. 11, 013003 (2009).

    Kushwaha, M. S., Halevi, P., Dobrzynsky, L. and Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71, pp.2022-2025 (1993).

    Krokhin, A. A., Arriage, J. and Gumen, L. N., Speed of sound in periodic elastic composites, Phys. Rev. Lett. 91, 264302 (2007)

    Lai, Y., Wu, Y., Sheng, P. and Zhang, Z. Q., Hybrid elastic solids, Nat. Mater. 10, (2011).

    Lazarow, B. S. and Jensen, J. S., Low-frequency band gaps in chains with attached with non-linear oscillators, Int. J. Non-linear Mech. 24, pp.1186-1193 (2007).

    Li, J. and Chan, C. T., Double-negative acoustic metamaterial, Phys. Rev. E 70, 055602 (2004).
    Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. and Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz, Science 306, pp.1351-1353 (2004).

    Liu, A. P., Zhu, R., Liu, X. N., Hu, G. K. and Huang, G. L., Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials, Wave Motion 49, pp.411-426 (2012).

    Liu, X. N., Hu, G. K., Huang, G. L. and Sun, C. T., An elastic metamaterial with simultaneously negative mass and bulk modulus, Appl. Phys. Lett. 98, 251907 (2011b).

    Liu, X. N., Hu, G. K., Sun, C. T. and Huang, G. L., Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, J. Sound Vib. 330, pp.2536-2553 (2011a).

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P., Locally resonant sonic materials, Science 289, pp.1734-1736 (2000).

    Lu, M. H., Feng, L. and Chen, Y. F., Phononic crystals and acoustic metamaterials, Materials Today 12, pp.34-42 (2009)

    Martínez-Sala, R., Sáncho, J., Sanchez, J. V., Gómez, V. and Llinares, J., Sound attenuation by sculpture, Nature 378, (1995).

    Pendry, J. B., Holden, A. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. microwave theory tech. 47, pp.2075-2084 (1999).
    Pendry, J. B., Holden, A. J. and Stewart, W. J., Extremely low frequency plasmons in metallic microstructures, Phys. Rev. Lett. 76, pp.4773-4776 (1996).

    Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, pp.3966-3969 (2000).

    Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. and Hladky-Hennion, A. C., Phononic crystals and manipulation of sound, Phys. Status Solidi C 6, pp.2080-2085 (2009).

    Royer, D. and Dieulesaint, E., Elastic waves in solids I:free and guided propagation, springer, Berlin, (1999).

    Sheng, P., Zhang, X. X., Liu, Z. and Chan, C. T., Locally resonant sonic materials, Physica B 338, pp.201-205 (2003).

    Sheng, P., Introduction to wave scattering,localization,and mesoscopic phenomena, Springer, San Diego (2006).

    Smith, D. R. and Schultz, S., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B 65,195104 (2002).

    Smith, D. R., Pendry, J. B. and Wiltshire, M. C. K., Metamaterials and negative refractive index, Science 305, pp.788-792 (2004).

    Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G. and Zhang, X., Three-dimensional optical metamaterial with a negative refractive index, Nature 455, pp.376-379 (2008).

    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Sov. Phys. Usp. 10, pp.509-514 (1968).

    Vincent, J. H., On the construction of mechanical model to illustrate Helmholtz’s theory of dispersion, Philos. Mag. 46, pp.557-563 (1898).

    Vukusic, P. and Sambles, J. R., Photonic structures in biology, Nature 424, pp.852-855 (2003).

    Wu, Y., Lai, Y. and Zhang, Z, Q., Effective medium theory for elastic metamaterials in two dimensional, Phys. Rev. B, 76, 025313 (2007).

    Yao, S., Zhou, X. and Hu, G., Experimental study on negative mass effective mass in a 1D mass-spring system, New J. Phys. 10, 043020 (2008).

    Zhou, X. and Gengkai, Hu., Analytic model of elastic metamaterials with local resonances, Phys. Rev. B, 75, pp.195109 (2009).

    Zhu, R., Huang, H. H., Huang, G. L. and Sun, C. T., Microstructure continuum modeling of an elastic metamaterial, Int. J. Eng. Sci. 49, pp.1477-1485 (2011).

    Zhu, R., Liu, X. N. and Huang, G. L., Microstructure design and experimental validation of elastic metamaterial plates with anisotropic mass density, Phys. Rev. B, 86, 144307 (2012).

    下載圖示 校內:2014-08-23公開
    校外:2014-08-23公開
    QR CODE