簡易檢索 / 詳目顯示

研究生: 江芯妤
Chiang, Hsin-Yu
論文名稱: 解析DNA聚合酶?降解粒線體基因組之結構機制
Structural Analysis of DNA Polymerase ? in Degrading Mitochondrial Genome
指導教授: 吳權娟
Wu, Chyuan-Chuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 69
中文關鍵詞: 粒線體基因組降解DNA聚合酶 ?核酸外切酶X射線蛋白質晶體學DNA聚合酶校對功能
外文關鍵詞: mitochondrial DNA degradation, DNA polymerase ?, 3ʹ exonuclease, X-ray crystallography, DNA proofreading
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體基因組 (mitochondrial DNA; mtDNA) 編碼13種參與在電子傳遞鏈中的蛋白質,對於生物體功能是不可或缺的。然而相比起細胞核,粒線體卻更容易遭受氧化傷害而導致mtDNA受損。為因應此傷害,鹼基切除修復或是單股DNA斷裂修復都是粒線體內有效率的DNA修復機制。然而,如果基因受損的程度超過修復系統的負荷,將導致受損mtDNA的不正常累積,最終導致疾病。為即時清除受損的mtDNA,粒線體具有降解雙股DNA的機制。有趣的是,此降解過程是由粒線體內負責複製mtDNA的DNA聚合酶? (DNA polymerase ? ; POL?) 所執行。此酵素透過其三端至五端外切酶的活性,也就是DNA聚合酶的校對活性,可以降解受損的mtDNA片段。從目前已解開的POL?分子結構,DNA受質均結合在聚合酶的活性中心,距離此酵素的外切酶活性中心有約35 Å的距離。藉此觀察,我們推測當POL?在降解雙股DNA片段或是執行其校對功能時,其分子構型將與目前已知的結構有很大的不同。為揭示POL?在降解mtDNA,與執行校對功能時DNA受質穿梭於兩活性中心的結構機制,在此,我們將透過X-ray晶體學的方式,嘗試解析DNA受質結合於人類POL?外切酶活性中心的分子結構。目前,我們已成功純化出POL?的催化亞基,POL?A。並透過酵素活性及受質結合測試的結果,我們設計出一個含有髮夾結構以及在尾端帶有兩個核苷酸長度的叉形DNA,作為與POL?共結晶的受質。結晶條件的測試正在進行中。我們預期此研究能夠闡明POL?參與mtDNA降解的結構機制,並拓展我們對於mtDNA品質控管之分子機制的了解,以期對相關疾病的致病機轉與治療方針的發展,有所助益。

    By encoding 13 proteins for electron transfer chain, mitochondrial DNA (mtDNA) is indispensable for mitochondrial function. However, comparing to nucleus genome, mtDNA faces more insults from reactive oxygen species that are constantly generated inside the organelle. To deal with the problem, mitochondria possess efficient base excision repair and single-stranded repair machineries. In addition, if damages overwhelm the repair system, a DNA degradation mechanism is triggered to actively eliminate damaged mtDNA copies. The timely clearance of damaged mtDNA, especially those are fragmented by double-stranded breaks, is crucial for preventing deleterious rearrangement of the genome. Intriguingly, this degradation process was found to be dependent on DNA polymerase ? (POL?), the sole replicase in mitochondria. In which the polymerase digests fragmented mtDNA through its 3ʹ-to-5ʹ exonuclease (i.e., proofreading) activity. In the available structures of POL? holoenzyme bound with a primed DNA template, the catalytic center of exonuclease domain is separated from polymerase core far away by approximately 35Å. With this notion, one can assume a large conformational change to accommodate substrate binding in exonuclease domain must occur during the enzyme digesting DNA or performing proofreading. Here we set out to reveal the molecular structure of POL? in performing 3ʹ-to-5ʹ exonuclease activity by X-ray crystallography. To this aim, we have successfully purified POL?A (the catalytic subunit of POL?) to homogenous. By activity and substrate-binding assays, we found that POL?A can only digest single-stranded DNA region but require duplex region for optimal substrate alignment. Accordingly, we designed a fork-shaped DNA consisting of a hairpin and 2-nt fork as the substrate for co-crystallizing with POL?A. Crystallization screen over available commercial crystallization kits in progress. We anticipate our work will uncover the structural basis of POL in degrading mtDNA and further our understanding of the molecular mechanism of mtDNA maintenance.

    Abstract I 中文摘要 III 致謝 V Table of contents VII List of Figures X List of Tables XI Abbreviation XII 1 Introduction 1 1.1 Mitochondrial DNA integrity and maintenance 1 1.2 The mitochondrial DNA polymerase? 5 1.3 The shuttling mechanism between pol and exo during proofreading 7 2 Specific Aim 11 2.1 Objective 11 2.2 Experimental approaches 11 2.2.1 Purification of recombinant POL?A 11 2.2.2 Biochemical characterization 12 2.2.3 Structural determination by X-ray crystallography 12 3 Materials and Methods 14 3.1 Materials 14 3.1.1 Plasmids and Constructs 14 3.1.2 Host cell lines 14 3.1.3 Synthetic oligonucleotides 15 3.1.4 Buffers and Solutions 16 3.2 Methods 16 3.2.1 Expression of POL?A in Sf9 insect cells 16 3.2.2 Purification of POL?A 18 3.2.3 In vitro nuclease activity assay 20 3.2.4 Fluorescence polarization-binding assay 22 3.2.5 Electrophoretic mobility shift assay (EMSA) 22 3.2.6 Preparation of POL?A-DNA complex for crystallization 23 4 Results 25 4.1 Expression and purification of recombinant POL?A 25 4.2 POL?A exhibits single-stranded specific 3ʹ-exonuclease activity on duplex DNA 27 4.3 Assembly of POL?A-DNA complex for crystallization 29 4.4 POL?A in editing mode 30 5 Discussion 34 5.1 POL?A showed poor digestion efficiency on 1-nt overhang and forked dsDNA 34 5.2 The enzymatic activity of our purified POLA may decade rapidly over time 34 5.3 POL?A behaves differently in degrading and editing modes 35 5.4 Investigating the role of accessory subunit POL?B in POL? performing exonuclease activity 37 5.5 Alternative DNA substrate is required for assembling mtDNA degradation machinery 38 6 Conclusion 40 Tables 41 Table 1. Classification of DNA polymerase 41 Table 2. Protein precipitation ratio in crystallization screen 42 Figures 43 Figure 1. Structural comparison of the exo domain of POL? with Klenow fragment and RNase T. 44 Figure 2. Expression and purification of POL?A. 47 Figure 3. POL?A exhibits single-stranded specific 3ʹ-exonuclease activity. 51 Figure 4. POL?A in digesting and binding to short overhang and forked DNA. 53 Figure 5. The design of forked hairpin DNA substrates for co-crystallizing with POL?A. 55 Figure 6. POL?A in digesting mismatched DNA. 56 Figure 7. POL?A displays different cleavage patterns in processing mismatched DNA with varied GC content in 3ʹ terminus. 58 References 59 Appendix Figures 63

    1. Jeong, S.Y. and D.W. Seol, The role of mitochondria in apoptosis. BMB Rep, 2008. 41(1): p. 11-22.
    2. Kubli, D.A. and B. Gustafsson Å, Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res, 2012. 111(9): p. 1208-21.
    3. Zorova, L.D., et al., Mitochondrial membrane potential. Anal Biochem, 2018. 552: p. 50-59.
    4. Vakifahmetoglu-Norberg, H., A.T. Ouchida, and E. Norberg, The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun, 2017. 482(3): p. 426-431.
    5. Sharma, P. and H. Sampath, Mitochondrial DNA Integrity: Role in Health and Disease. Cells, 2019. 8(2).
    6. Zhang, L., A. Reyes, and X. Wang, The Role of DNA Repair in Maintaining Mitochondrial DNA Stability. Adv Exp Med Biol, 2017. 1038: p. 85-105.
    7. Akbari, M., et al., Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst), 2014. 16: p. 44-53.
    8. Chen, T., et al., The generation of mitochondrial DNA large-scale deletions in human cells. J Hum Genet, 2011. 56(10): p. 689-94.
    9. Potenza, M.A., et al., Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel), 2021. 10(8).
    10. Moretton, A., et al., Selective mitochondrial DNA degradation following double-strand breaks. PLoS One, 2017. 12(4): p. e0176795.
    11. Shokolenko, I., et al., Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res, 2009. 37(8): p. 2539-48.
    12. Medeiros, T.C., et al., Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. J Cell Biol, 2018. 217(5): p. 1601-1611.
    13. Nissanka, N., et al., The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun, 2018. 9(1): p. 2491.
    14. Peeva, V., et al., Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun, 2018. 9(1): p. 1727.
    15. Uhler, J.P., et al., MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication. Nucleic Acids Res, 2016. 44(12): p. 5861-71.
    16. Kornblum, C., et al., Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet, 2013. 45(2): p. 214-9.
    17. Peter, B. and M. Falkenberg, TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel), 2020. 11(4).
    18. Lee, Y.S., W.D. Kennedy, and Y.W. Yin, Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell, 2009. 139(2): p. 312-24.
    19. Szymanski, M.R., et al., Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. Embo j, 2015. 34(14): p. 1959-70.
    20. Rahman, S. and W.C. Copeland, POLG-related disorders and their neurological manifestations. Nat Rev Neurol, 2019. 15(1): p. 40-52.
    21. Sowers, M.L., et al., Networked Communication between Polymerase and Exonuclease Active Sites in Human Mitochondrial DNA Polymerase. Journal of the American Chemical Society, 2019. 141(27): p. 10821-10829.
    22. Johnson, A.A. and K.A. Johnson, Exonuclease proofreading by human mitochondrial DNA polymerase. J Biol Chem, 2001. 276(41): p. 38097-107.
    23. Eom, S.H., J. Wang, and T.A. Steitz, Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996. 382(6588): p. 278-81.
    24. Hsiao, Y.Y., et al., Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways. PLoS Biol, 2014. 12(3): p. e1001803.
    25. Echols, H. and M.F. Goodman, Fidelity mechanisms in DNA replication. Annu Rev Biochem, 1991. 60: p. 477-511.
    26. Reha-Krantz, L.J., DNA polymerase proofreading: Multiple roles maintain genome stability. Biochim Biophys Acta, 2010. 1804(5): p. 1049-63.
    27. Bloom, L.B., et al., Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry, 1994. 33(24): p. 7576-86.
    28. Joyce, C.M., How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment). J Biol Chem, 1989. 264(18): p. 10858-66.
    29. Rossi, A.M. and C.W. Taylor, Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc, 2011. 6(3): p. 365-87.
    30. Cowart, M., et al., DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry, 1989. 28(5): p. 1975-83.
    31. Lee, Y.S., et al., Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem, 2010. 285(2): p. 1490-9.
    32. Silva-Pinheiro, P., et al., DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Res, 2021. 49(9): p. 5230-5248.
    33. Farge, G., et al., The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities. Nucleic Acids Res, 2008. 36(2): p. 393-403.

    無法下載圖示 校內:2027-09-25公開
    校外:2027-09-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE