| 研究生: |
謝壎煌 Hsieh, Hsun-Huang |
|---|---|
| 論文名稱: |
供水系統開發與管理調配之研究-以彰化地區為例 Study on the development and managed distribution of water supply system – A case study in Changhua area |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 水源開發 、供水管理系統 、供水調配 、MODFLOW 、MODMAN |
| 外文關鍵詞: | water source development, water supply management system, water supply distribution, MODFLOW, MODMAN |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
彰化地區工業與生活用水大都取自地下水,部分供水由豐原與林內淨水場支援,然而彰化地區之地下水資源並無總量管理機制,由大城鄉產生地層下陷現象顯示,目前地下水使用已超出補注速度。為達彰化地區穩定供水,本研究提出由供水管理系統建置、監測站網檢討與供水總量調配方案等多方位管理系統,提升彰化地區供水系統之應變能力與效率。
本研究供水水源開發於彰化地區北部與南部,各選定一試驗場址進行河畔取水評估,藉由現場試驗推估水文地質參數,利用地下水流數值軟體MODFLOW建構現場數值模型,模擬取用目標出水量時,河畔取水對地下水位之影響。由研究成果顯示,快官地區之合適之水井數與出水量分別為8口單井出水量為7,500CMD,竹塘地區為6口出水量為7,404CMD,可達成取用水量目標,對河畔地下水位之影響降至最低。
地下水使用限制需有合理之監測系統,本研究藉由GEO-EAS地質統計軟體推估變異數參數,由NETGRAPH軟體進行井網密度分析,探討目前監測井分佈情形,由研究成果建議新增3口監測井於扇頂位置。
本研究範圍供水來源包含合理地下水量、外來支援水量與可能開發水量等水源,地下水需藉由MODMAN與LINDO軟體,配合供水與限制條件提出9種供水調配方案,模擬在各種條件限制下之水量分配情形,提升彰化地區水資源之合理取用與調配管理。由研究成果顯示,若供水條件未考慮開發新水源,必須以下限水位標準開發地下水;若供水條件加入開發新水源,則可維持以安全水位標準開發地下水與穩定供水。
為掌握水資源有效之供應資訊,本研究亦建置供水管理系統以提升管理效率,藉由監測儀器之自動記錄、圖表繪製與資料傳輸功能,大幅縮短目前資料處理與傳送時間,提供管理者進行管理與調配水量決策。
The water for industrial and domestic uses in the Changhua region comes mainly from groundwater, with some water sources supported by the waterworks in Fengyuan and Linnei. However, land subsidence in the Dachang country indicates that the use of groundwater has exceeded the speed of recharging due to the lack of a management system for the overall amount of groundwater resources in Changhua. To ensure stable water supply in the Changhua region, this study proposes a multifold management system that covers the configuration of the water supply management system, assessment of the monitoring wells, distribution of the overall water supply amount, and so on in order to upgrade the reacting capacity and efficiency of the water supply system in the Changhua region under the condition of reasonably developing groundwater sources.
This study has selected two experimental sites as water supply sources for water development. Located in the north and south of Changhua, these sites are used to estimate the data on hydrogeology conditions. The study uses the groundwater software MODFLOW to create the site numerical model, which will indicate the influence of groundwater levels from water development. The study shows that the design 8 pumping wells of 7,500 CMD in Kuai-Guan area and 6 pumping wells of 7,404 CMD in Chu-Tang area. The water development can attain the water use target and reduce the influence on the groundwater level near riverbank.
The limit for the use of groundwater requires a reasonable monitoring system. This study uses the geological statistics software GEO-EAS to estimate the coefficient of variation and the software NETGRAPH to analyze the density of wells to estimate the density of well distribution. The study results indicate that it is necessary to increase 3 monitoring wells at the fan-head area.
The water supply sources for this study include water sources of reasonable groundwater, external water supply amount, and possible water source development. The study proposes 9 water supply distribution projections by using the MODMAN and LINDO software and by referring to the water supply and limit conditions to simulate various conditions of water distribution in order to upgrade the reasonable use and management of water resources in the Changhua region. The results of this research show the groundwater should be developed through the lower limit if the new water sources development has not been considered. If new water sources have already been developed, groundwater sources should be developed by maintaining the safety groundwater level to ensure stable water supply.
To control the effective and real-time supply data of water resources, this study has set up a water supply management system to upgrade management efficiency. Monitoring devices with the functions of automatic recording, chart preparation, and data transmission can effectively shorten the time for current data processing and transmission. This will provide managers with the strategies of real-time management and coordination of water amount.
參考文獻
1. Aguado, E., I. Remson, Groundwater hydraulics in aquifer management, Journal of the Hydraulics Division, 100(1):103-118, 1974.
2. Alley, W. M., E. Aguado, I. Remson, Aquifer management under transient and steady-state condition, Water Resources Bulletin, 12(5):963-972, 1976.
3. Atwood, D.F., S. M. Gorelick, Hydraulic gradient control for groundwater contaminant removal, Journal of Hydrology, 76(1-2):85-106, 1985.
4. Bochever, F. M., Evaluation of well.field yield in alluvial aquifers:The impact of a partially penetrating stream, In Proceedings of VODGEO (Hydrogeology), 13:84-115, 1966.
5. Butler, J. J., V. A. Zlotnik, M. S. Tsou, Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream, Ground Water, 39(5):651-659, 2001.
6. Chen, X. H., X. Chen, Effect of aquifer anisotropic on the migration of lnfiltrated stream water to a pumping well, Journal of Hydrology, 8(5):287-293, 2003.
7. Chen, W. P., C. H. Lee, Estimating Groundwater Recharge from Stream flow Records, Environ Geol, 44:257-265, 2003.
8. Chen, X. H., Y. Yin, Semianalytical solution for stream depletion in partially penetrating streams, Ground water, 42(1):92-96, 2004.
9. Chen, X. H., Y. Yin, J. W. Goeke, R. F. Diffendal Jr, Vertical monement of water in a High Plains Aquifer induced by a pumping well, Environ Geol, 47:931-941, 2005.
10. Chen, X. H., Hydrologic connections of astream–aquifer-vegetation zone in south-central Platte River valley, Nebraska, Journal of Hydrology, 333:554-568, 2007.
11. Chen, J. W., Yeh, H. F., Hsieh, H. H. and Lee, C. H., Groundwater resources management under environmental constraints in Taipei Basin, Taiwan, Journal of China Geosciences Vol.18 Special Issue June 2007, 37, 2007.
12. Chen, X. H., M. Burbach, C. Cheng, Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction, Journal of Hydrology, 352:250-266, 2008.
13. Chen, J. W., Hsieh, H. H., Yeh, H. F., Lee, C. H., The Effect of the Variation of River Water Level on the Estimation Groundwater Recharge in Hsinhuwei River, Taiwan, Environmental Earth Sciences, 59(6): 1297-1307, 2009.
14. Cheng, Y., C. H. Lee, Y. C. Tan, H. F. Yeh, An optimal water allocation for an irrigation district in Pingtung country, Taiwan, Irrig. and Drain., DOI: 10.1002/ird, 2008.
15. Chiang, W. H., W. Kinzelbach, Processing Modflow for windows (version 5.30), Hamburg, Germany, 1998.
16. Deninger, R.A., System analysis of water supply systems, Water Resources Bulletin, 6(4):573-579, 1970.
17. Don, N. C., N. T. M. Hang, H. Araki, H. Yamanishi, K. Koga, Groundwater resources management under environmental constraints in Shiroishi of Saga plain, Japan, Environ Geol, 49:601-609, 2006.
18. Fetter, C.W., The Concept of Safe Groundwater Yield in Coastal Aquifers.1, Water Resources Bulletin, 8:76-1173, 1972.
19. Gong Huili, Li Menlou, Hu Xinli, Management of groundwater in Zhengzhou City, China, Water Research, 34(1):57-62, 2000.
20. Gorelick, S. M., A review of distributed parameter groundwater management modeling methods, Water Resources Research, 19(2):305- 319, 1983.
21. Gorelick, S. M., C. I. Voss, P.E. Gill, W. Murrary, M. A. Saunnders, M. H. Wright, Aquifer reclamation design: The use of contaminant transport simulation coupled with nonlinear programming, Water Resources Research, 20(4):415-427, 1984.
22. Glover, R. E., C. G. Balmer, River depletion from pumping a well near a river, American Geophysical Union Transactions, 35(3):468-470, 1954.
23. Grigoryev, V. M., The effect of streambed siltation on well.field yield in alluvial aquifers, Water Supply and Sanitation, 6:110-118, 1957.
24. Hantush, M. S., Wells nesr streams with semipervious beds, Journal Geophysical Research, 70(12):2829-2838, 1965.
25. Hazen, R. H., Comparative compressibilities of silicate spinels: anomalous behavior of (Mg, Fe)2SiO4, Science, 259:206-209, 1993.
26. Hunt, B., Unsteady stream depletion from ground water pumping, Ground Water, 37(1):98-102, 1999.
27. Hsieh, H. H., Lee, C. H., Ting, C. S., Chen, J. W., Infiltration Mechanism of Artificial Recharge of Groundwater - a Case study at Pingtung Plain, Taiwan, 2009. ( DOI: 10.1007/ s12665-009-0194-2)
28. Jenkins, C. T., Techniques for computing rate and volume of stream depoetion by well, Ground Water, 6(2):37-46, 1968.
29. Lee, C. H., W. P. Chen, Estimating Groundwater Recharge from Water Balance Model Coupled with Streamflow Hydrographs, 2006 Western Pacific Geophysics Meeting, American Geophysics Union, AGU, Beijing China, 64, 2006.
30. Lemoine, P. H., E. G. Reichard, I. Remson, An efficient response matrix method for coupling a groundwater simulator and a regional agricultural management model, Water Resources Bulletin, 22(3):417-423, 1986.
31. Marshall, T. J., Permeability and size distribution of pores, Nature, vol.180, 664-665, 1957.
32. Matteo, L. D., W. Dragoni, Empirical Relationships for estimating Stream depletion by a well pumping near a gaining stream, Ground Water, 43(2):242-249, 2005.
33. McDonald, M. G., A. W. Harbaugh, A modular three-dimensional finite-difference ground-water glow model, U.S. Geological Survey, Virginia, 1988.
34. Modica, E., Reilly, T. E., Pollock, D. V., Patterns and agedistribution of groundwater flow to streams, Ground Water, 35(3):523–537, 1997.
35. Neuman S.P., Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response, Water Resour. Res., (11)2, 329-342, 1975.
36. Peralta, R. C., H. Azarmnia, S. Takahashi, Embedding and response matrix techniques for maximizing steady-state ground-water extraction: computational comparsion, Ground Water, 29(3):357-364, 1991.
37. Psilovikos, A. A., Optimization models in groundwater management, based on linear and mixed integer programming. An application to a Greek hydrogeological basin, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(1-2):139-144, 1999.
38. Sheperd, J. C., Training needs analysis model for qualified nurse practitioners, Journal of Nursing Management, 2:181-185, 1994.
39. Sophocleous, M. A., A. Koussis, J. L. Martin, S. P. Perkins, Evaluation of simplified stream.aquifer depletion models for water rights administration, Ground Water, 33(4):579-588, 1995.
40. Sophocleous, M., From safe yield to sustainable development of water resources-the Kansas experience, Journal of Hydrology, 235:27-43, 2000.
41. Talahashi, S., R. C. Peralta, Optimal perennial yield planning for complex nonlinear aquifers: metheds and examples, Advances in Water Resources, 18(1):49-62, 1995.
42. Theis, C. V., The effect of a well on the flow of a nearby stream, American Geophysical Union Transactions, 22(3):734-738, 1941.
43. Theodossiou, N. P., Application of non-linear simulation and optimization models in groundwater aquifer management, Water Resources Management, 18(2):125-141, 2004.
44. Ting, C. S., Groundwater Resources Evaluation and Management for Pingtung Plain, Taiwan, Ph. D theisis Free University, Amsterdam, ISBN 90-9008794-X, 1997.
45. Wilson, J. L., Induced infiltration in aquifer with ambient flow, Water Resources Research, 29(10):3503-3512, 1993.
46. Wattenbarger, R. A., Maximizing seasonal withdrawals from gas storage reservoirs, JPT:Journal of petroleum techlonogy, 22(8):948-998, 1970.
47. Wills, R. L., A planning model for the management of groundwater quality, Water Resources Research, 15(6):1305-1312, 1979.
48. Huang, Y. P., Kuo, W. C., Lee, C. H., Ting, C. S., Hsieh, H. H., River Water-Quality Improvement using a Large-Scale constructed wetland in southern Taiwan, The Jourmal of the Chinese Institute of Environmental and Engineering, 2008.
49. Zhou, Y., NETGRAPH, a program for determining network density for groundwater monitoring, IHE. Delft, The Netherlands, 1993.
50. 丁澈士、柯亭帆、吳峰誼,應用變水頭實驗及推估公式對河床水力傳導係數之分析,臺灣水利,第44卷,第1期,第26-35頁,1996。
51. 丁澈士、簡明克,補注入滲動態之試驗研究,農業工程學報,第50卷,第4期,第51-61頁,2004。
52. 丁澈士,屏東平原地下水管理最佳化模式,地下水資源及水質保護研討會,第265-284頁,1994。
53. 丁澈士、黃信恩,屏東平原地下水人工補注水資源優化管理之可行性研究-以林邊溪流域為例,臺灣水利,第51卷,第2期,第54-61頁,2003。
54. 中興工程顧問股份有限公司,濁水溪沖積扇之地面地下水聯合運用第三階段濁水溪沖積扇地面地下水聯合營運管理規劃報告,2001。
55. 中央地質調查所全球資訊網站。http://www.moeacgs.gov.tw/main.jsp
56. 中央氣象局,氣候年報-地面資料,1990-2005。
57. 中興大學土壤學系,彰化縣土壤調查報告,1969。
58. 王仁峰、胡道光,線性地質統計學,地質出版社,1988。
59. 王家慶,台灣地區地下水觀測網第一期計畫,水文地質調查研究及建檔八十二年度報告,濁水溪沖積扇〈二〉,鑽探岩心之有孔蟲及花粉分析資研究,中央地質調查所,1994。
60. 台灣省水利局,台灣地區地下水監測站網地下水位年報表(濁水溪沖積扇、屏東平原),1996。
61. 江崇榮,濁水溪沖積扇之水文地質與地下水系統概念模型,濁水溪沖積扇地下水及水文地質研討會論文集,第127-143頁,1996。
62. 沈向白,濁水溪沖積扇地區地下水資源調查(含彰化縣、雲林縣),台灣省水利局,1991。
63. 徐享崑、劉豐壽、鄭昌奇,臺灣地區地層下陷之現況,成因與對策,臺灣水利,第43卷,第3期,第19-29頁,1995。
64. 李振誥、陳尉平,台灣地下水補注量評估與探討,第六屆地下水資源及水質保護研討會,第387-398頁,2004。
65. 李振誥、陳尉平、李如晃,應用基流資料估計法推估臺灣地下水補注量,臺灣水利,第50卷,第1期,第69-80頁,2002。
66. 李振誥,地層下陷防治方法之研究,地層下陷防治執行方案宣導考察活動『地層下陷防治研討會』教材,1997。
67. 李振誥,臺灣地區地層下陷環境問題之防治及其保護措施,現代化研究,第21卷,第4-22頁,2000。
68. 李振誥、許清荃,地下水資源調配與管理-以濁水溪沖積扇為案例,水資源管理,第8卷,第24-31頁,2000。
69. 李振誥、許清荃、林俶寬,濁水溪沖積扇多層地下水調配與管理之研究,臺灣水利,第48卷,第4期,第41-52頁,2000。
70. 季月華、朱國榮、江思珉,地下水管理模型軟件GWM簡介及算例,勘察科學技術,第1期,2007。
71. 邱皓政,量化研究與統計分析,五南圖書出版股份有限公司,2005。
72. 高華聲、陳瑞昇、彭瑞國、謝勝彥,水力傳導係數、湖水深度及地下水深度對人工湖補注地下水之影響,臺灣水利,第49卷,第2期,第46-54頁,2001。
73. 經濟部水利署水文水資源管理供應系統網站。 網址: http://gweb.wra.gov.tw/wrweb/,2009。
74. 經濟部水資源局,水資源政策白皮書,1998。
75. 經濟部中央地質調查所,台灣地區地下水監測網第一期計畫八十一、八十二及八十三年度濁水溪沖積扇水文地質調查研究報告,1995。
76. 經濟部中央地質調查所全球資訊網站。網址http://www.moeacgs.gov.tw/,2009。
77. 經濟部水利署水文水資源管理供應系統網站。網址: http://www.wra.gov.tw/default.asp,2005
78. 經濟部水資源局,水文年報,1996-2003。
79. 經濟部水資源局,台灣地區地下水監測網計畫81~83年度技術成果彙編,1996。
80. 經濟部水資源局,臺灣地區地下水監測網整體計劃第一期成果彙編,1999。
81. 經濟部水資源局,臺灣地區南部區域水資源綜合發展計畫,1998。
82. 經濟部水資源統一規劃委員會,臺灣地區地下水資源,1992。
83. 許清荃,2000,濁水溪沖積扇多層地下水調配與管理之研究,國立成功大學資源工程所碩士論文。
84. 張良正、龔誠山,區域性地下水監測站網檢討八十四年度報告,區域性地下水監測站網檢討(I)-濁水溪沖積扇監測站井佈置檢討,經濟部水利司,1995。
85. 陳志忠,彰化地區淺層土壤入滲行為之研究,國立成功大學資源工程所碩士論文,1997。
86. 陳忠偉、潘文健、李振誥,濁水溪沖積扇與屏東平原地下水合適出水量之研究,臺灣水利,第50卷,第3期,第70-82頁,2002。
87. 陳俊焜,濁水溪沖積扇地下水資源調配與管理之研究,國立成功大學資源工程所碩士論文,1998。
88. 陳進發、李振誥、陳尉平,應用未飽和層水平衡理論估計彰化地區地下水補注量之研究,臺灣水利,第47卷,第1期,第54-66頁,1999。
89. 陳尉平、李振誥、陳進發,2000,由河川資料之流量歷線估計中部地區之地下水補注量,礦冶,第44卷,第3期,第97-110頁,2000。
90. 陳愛光、李慈君、曹劍鋒,地下水資源管理,地質出版社,北京市,1991。
91. 農林航空測量所,國家數值地形模型(Digital Terrain Model) ,1989。
92. 農業工程研究中心,濁水溪平原地下水數學模式之評估與應用,1989。
93. 溫志超,快官淨水場(新設)水源開發試驗及分析,國立雲林科技大學水土資源與防災科技研究中心,2006。
94. 溫志超,竹塘淨水場(新設)水源開發試驗及分析,國立雲林科技大學水土資源與防災科技研究中心,2008。
95. 廖培明、潘禎哲、龔誠山、蔡文豪、陶方策、傅奕靜,彰化地區與烏溪溪水系地面地下水聯合運用,第六屆地下水資源及水質保護研討會,第369-375頁,2004。
96. 彰化縣政府,中華民國八十四年彰化縣統計要覽,第45期,1996。
97. 鄭文傑、倪至寬,侷限含水層之暫態非全程貫入井抽降水試驗暨地盤水理特性研析,臺北科技大學學報,第41-1期,2008。
98. 劉平妹、黃奇瑜,台灣地區地下水觀測網第一期計畫,水文地質調查研究及建檔八十一年度報告,濁水溪沖積扇〈一〉,附件三,地質鑽探岩心之古生物分析,中央地質調查所,1993。
99. 劉俊達,彰化地區地下水資源調配與管理之研究,國立成功大學資源工程所碩士論文,1997。
100. 劉俊達、李振誥、許惠悰,彰化地區地下水資源調配與管理之研究,鑛冶,第42卷,第3期,第87-101頁,1998。
101. 劉志文、吳銘志、李振誥、陳俊焜,地下水資源抽水管理方案之研究-以濁水溪沖積扇為例,中國地質學會八十八年年會暨學術研討會,第330-332頁,1999。
102. 劉志文,屏東沖積平原地下水資源調配與管理之研究,國立成功大學地球科學研究所碩士論文,2000。
103. 劉振宇,金門地下水資源調查分析,經濟部水利署委託,2007。
104. 賴慈華,濁水溪扇洲南翼之晚第四紀地下地質,國立台灣大學地質學研究所碩士論文,1995。
105. 譚義績、李峑毅、蘇明信,台灣地區地下水管理支援決策系統之建議,土木水利,第34卷,第4期,第101-111頁,2007。