簡易檢索 / 詳目顯示

研究生: 劉姿蘭
Liu, Tzu-Lan
論文名稱: 合成膽固醇分子模版之探討
The Investigation on the Optimal Composition for Synthesizing Cholesterol-Imprinted Polymers
指導教授: 葉茂榮
Yeh, Mou-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 186
中文關鍵詞: 膽固醇模版
外文關鍵詞: cholesterol, imprinted
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床上檢驗血液中膽固醇濃度可以協助醫生診斷心臟血管疾病。 目前在臨床上,以酵素法為血液膽固醇檢驗為最常被使用的方法,主要是因為此方法具有較佳之選擇性、靈敏性及準確性,然而,此方法仍是以呈色反應來定量濃度,故受測樣品仍需經過適當的前處理,才能減少血液中存在的干擾物質所造成的影響,並需足夠的反應時間。而利用分子模板之方法,可以增加偵測的選擇性及專一性,提高準確性。
    利用微卡計得到最佳的官能基( MAA )與交聯劑( EGDMA ),且官能基( MAA )與膽固醇最佳莫耳比為1,也由吸附效能測試得到證實MAA/ CHO莫耳比為1時α=2.45,MAA/CHO莫耳比為3時α=1.5。MAA/ CHO莫耳比為1以共價( cme-MIP )及非共價鍵結( c-MIP )形成膜版,經過一系列膽固醇吸附測試與競爭性吸附,數據都顯示cme-MIP吸附及選擇性優於c-MIP。cme-MIP最大吸附量1.93mg / 0.3g polymer。物理測試上cme-MIP的孔洞平均,剛性較強,IR顯示吸附較完全。c-MIP的孔洞不平均,剛性較弱,IR吸附較不完全,種種結果顯示,膽固醇膜版以共價鍵結比非共價鍵結要來好。

    The examination of the cholesterol concentrations in blood is an important index for doctors to diagnose the heart blood vessel disease of patients clinically. The enzyme method is the most popular way to analyze the cholesterol concentration in blood, since it has a better selectivity, sensitivity and accuracy. However, the quantification of this method is based on color variation; samples must be pre-treated to reduce the interferences existing in blood. Additionally, the reaction time is long. The got optimal function and crosslinking monomer that mole ratio 1 by microcalarmeter. The imprinting effect MAA/CHO mole ratio 1, α=2.45, MAA/CHO mole ratio 3, α=1.5. The mole ratio 1 make molecular imprinting by covalent ( cme-MIP ) and non-covalent ( c-MIP ), that using cholesterol solution and competition solution with stigmesterol or progestone as adsorbed solution. The results show cme-MIP imprinting effect and selectivity better than c-MIP. The c-MIP got maximum adsorbed amount 1.93mg / 0.3 g polymer. The physics test that cme-MIP better that have imprinting same size hole, rigidity and adsorbed full that c-MIP. For these reason making cholesterol -imprinting by covalent better than non-covalent.

    中文摘要 Ⅱ 英文摘要 Ⅲ 致謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅸ 圖目錄 Ⅹ 專有名詞對照表 ⅩⅦ 第一章 緒 論 1 1-1膽固醇的探討 1 1-2肝臟膽固醇來源 4 1-3膽固醇的合成 6 1-4 膽固醇濃度的調節 9 1-5膽固醇的轉化 9 1-6高膽固醇所造成的血脂肪與動脈硬化 10 1-7低膽固醇所造成的疾病 13 1-8膽固醇酯酵素 15 1-9影響膽固醇氧化因子 16 1-10膽固醇氧化產物簡介 19 第二章 原 理 20 2-1分子模板原理 20 2-1-1 分子模板的製作方式 23 2-1-2 溶劑 25 2-1-3 溫度 26 2-2分子模板材料選擇 30 2-2-1吸附效能 32 2-2-2目前一般在選用官能基單體有三類 33 2-2-3一般常用的交連劑單體 34 2-2-4一般常用的起始劑單體 36 2-3分子模板高分子知化學與溫度穩定性 36 2-4分子模板高分子的偵測 37 2-4-1 電導感測器 37 2-4-2 螢光偵測系統 38 2-5分子模板應用 39 第三章 實 驗 動 機 41 3-1膽固醇強酸發色法 41 3-2膽固醇酵素法 41 3-3膽固醇電化學法 43 3-4膽固醇分子模板感測法 43 3-4-1非共價鍵結 44 3-4-2共價鍵結方式 44 3-5本論文實驗原理 47 3-5-1第一種方法:結合共價與非共價鍵結法 47 3-5-2第二種方法:使用非共價鍵結法 48 3-6利用檢測儀器來測定所製作膽固醇分子模板性質 49 3-6-1核磁共振 49 3-6-2熱重分析儀 52 3-6-3紅外線光譜 54 3-6-4高效能液相層析 58 3-6-5微卡計 60 3-6-6 氮氣等溫吸附脫附測量 66 第四章 實 驗 設 備 與 方 法 71 4-1藥品與儀器 71 4-1-1藥品 71 4-1-2儀器 74 4-2實驗方法 75 4-2-1膽固醇酯之合成 75 4-2-2微熱卡計之等溫滴定 76 4-2-3分子模板粉粒體製備 79 4-2-3-1製備方法一,膽固醇分子模板 79 4-2-3-2製備方法二,膽固醇甲基丙烯酸酯分子模板 80 4-2-3-3製備方法三,非膽固醇分子模板 81 4-2-4模板吸附分析 83 4-2-5HPLC操作與前處理 84 4-2-6膽固醇與膽固醇甲基丙烯酸酯相對於溶劑最少使用量 84 4-2-7微分掃瞄卡計 85 4-2-8 傅利葉轉換紅外線光譜儀 85 4-2-9 熱重分析儀 85 4-3實驗架構 86 第五章 結 果 與 討 論 87 5-1合成膽固醇甲基丙烯酸酯的結構鑑定 87 5-1-1核磁共振光譜儀C譜圖 88 5-1-2核磁共振光譜儀H譜圖 89 5-1-3紅外光譜圖 90 5-1-4氣相層析質譜圖 91 5-2微卡計的等溫滴定 92 5-2-1單體與單體或單體與目標物之間的關係 94 5-2-1-1功能性單體滴定膽固醇粉體 94 5-2-1-2交聯劑單體滴定膽固醇粉體 105 5-2-1-3功能性單體滴定交聯劑單體 117 5-2-1-4功能性單體滴定膽固醇溶液 120 5-2-2膽固醇溶液滴定分子模板 126 5-2-2-1膽固醇溶液滴定cme-MIP 128 5-2-2-2膽固醇溶液滴定c-MIP 133 5-2-2-3膽固醇溶液滴定NIP 138 5-3分子模板粉粒體測試 143 5-3-1HPLC分析膽固醇之穩定度 145 5-3-2膽固醇溶液在HPLC的校正曲線 146 5-3-3荳固醇溶液在HPLC的校正曲線 147 5-3-4類固醇溶液在HPLC的校正曲線 148 5-3-5膽固醇對分子模板吸附比較 149 5-4物性測試 158 5-4-1膽固醇對各種溶劑之溶解度 158 5-4-2膽固醇酯模板分子清洗下來核磁共振光譜儀H譜圖 161 5-4-3以紅外光譜測量分子模板清洗前與清洗後比較圖 162 5-4-4以熱重分析儀量測清洗前與清洗後比較 166 5-4-5以BET測量孔徑大小 169 第六章 結 論 與 建 議 173 參考文獻 175

    1. 行政院衛生署http://www.doh.gov.tw/cht/index.aspx
    2. Copyright©2000 Beniamin/Cummings, an imprint of Assison Wesley Lonhman,Inc.
    3. 陳香蘭,平版式酵素電極於膽固醇檢測之應用,碩士論文,中國文化大學生物科技研究所,台北,2002.
    4. Stryer.L. W.H.Freeman and Company., Biochemistry., 1995.
    5. 何敏夫, 臨床化學與實驗, 合記圖書出版社, 1996.
    6. D. J. McNamara, ”Dietary cholesterol and atherosclerosis”, Biochimicaet Biiophysica Acta ., 1529, 310-320 (2000).
    7. Osada K, Kodama T, Yamada Koji, Sugano M., Oxidation of cholesterol byheating., J Agric Food Chem, 41(8):1198-1202., 1993
    8. Sander BD, Smith DE, Addis PB, Park SW., Effects of prolonged and adversestorage conditions on levels of cholesterol oxidation products in dairy products., J Food Sci ,54(4): 874-879. 1989.
    9. Smith LL, Matthews WS, Price JC, Backman RC, Reynolds B., Thin- layerchromatographic examination of cholesterol autoxidation. J Chromator ., 27:187-205., 1967.
    10. Luby JM, Gary JI, Harte BR, Ryan TC., Photooxidation of cholesterol in butter, J Food Sci., 51(4): 904-907., 1986.
    11. Luby JM, Gary JI, Harte BR., Effects of packaging and light source on theoxidative stability of cholesterol in butteroil. J Food Sci 51(4): 908-911., 1986.
    12. Wasilchuk BA Le, Quesne PW, Vouros P. , Monitoring cholesterol autoxidationprocesses using multideuteriated cholesterol., Anal Chem, 64:1077-1087.,1992.
    13. Ralf Müller, Lars I. Andersson, Klaus Mosbach, Molecularly imprinted polymers facilitating a -elimination reaction, Die Makromolekulare Chemie, Rapid Communications, Volume 14, Issue 10, Pages: 637-641, Date: October 1993.
    14. Hassan Y. Aboul-Enein, Mahmoud I. El-Awady, Charles M. Heard , Thin layer chromatographic resolution of some 2-arylpropionic acid enantiomers using L-(-)-serine, L-(-)-threonine and a mixture of L-(-)-serine and L-(-)-threonine-impregnated silica gel as stationary phases, Biomedical Chromatography, Volume 17, Issue 5, Pages: 325-334, Date: July 2003.
    15. Xiumei Lu, Pei Liu, Huashan Chen, Feng Qin, Famei Li, Enantioselective pharmacokinetics of mabuterol in rats studied using sequential achiral and chiral HPLC, Biomedical Chromatography
    Volume 19, Issue 9, Pages: 703-708, Date: November 2005.
    16. Yong Jiang, Ai-Jun Tong, Synthesis of molecularly imprinted microspheres for recognition of trans-aconitic acid, Journal of Applied Polymer Science, Volume 94, Issue 2, Pages: 542-547, Date: 15 October 2004.
    17. Kay Severin, Buchbesprechung: Molecularly Imprinted Polymers. Man-Made Mimics of Antibodies and their Applications in Analytical Chemistry. (Techniques and Instrumentation in Analytical Chemistry - Vol. 23). Herausgegeben von Börje Sellergren, Angewandte Chemie, Volume 114, Issue 6, Pages: 1116, Date: March 15, 2002.
    18. Kay Severin, Buchbesprechung: Molecularly Imprinted Polymers. Man-Made Mimics of Antibodies and their Applications in Analytical Chemistry. (Techniques and Instrumentation in Analytical Chemistry - Vol. 23). Herausgegeben von Börje Sellergren, Angewandte Chemie, Volume 114, Issue 6, Pages: 1116, Date: March 15, 2002.
    19. Piletsky Sergey A., Anthony P. F. Turner,Electrochemical Sensors Based on Molecularly Imprinted Polymers, Electroanalysis , Volume 14, Issue 5, Pages: 317-323, Date: March 2002.
    20. Sreenivasan K., Sivakumar R., Interaction of molecularly imprinted polymers with creatinine, Journal of Applied Polymer Science, Volume 66, Issue 13, Pages: 2539-2542, Date: 26 December 1997.
    21. Christian Nilsson, Staffan Nilsson, Nanoparticle-based pseudostationary phases in capillary electrochromatography, ELECTROPHORESIS, Volume 27, Issue 1, Pages: 76-83, Date: No. 1 January 2006.
    22. Franz L. Dickert, Sylvia Thierer, Molecularly imprinted polymers for optochemical sensors, Advanced Materials, Volume 8, Issue 12, Pages: 987-990, Date: December 1996.
    23. Zhiyong Cheng, Liwei Zhang, Yuanzong Li, Synthesis of an Enzyme-like Imprinted Polymer with the Substrate as the Template, and Its Catalytic Properties under Aqueous Conditions, Chemistry – A, European Journal, Volume 10, Issue 14, Pages: 3555-3561 , Date: July 19, 2004.
    24. Günter Wulff, Thomas Gross, Rainer Schönfeld, Enzyme Models Based on Molecularly Imprinted Polymers with Strong Esterase Activity, Angewandte Chemie International Edition in English, Volume 36, Issue 18, Pages: 1962-1964, Date: October 2, 1997.
    25. Akimitsu Kugimiya, Toshifumi Takeuchi, Molecularly Imprinted Polymer-Coated Quartz Crystal Microbalance for Detection of Biological Hormone, Electroanalysis, Volume 11, Issue 15, Pages: 1158-1160, Date: November 1999.
    26. Anna Jakubiak, Bo ena N. Kolarz, Julia Jezierska, Catalytic Activity of Copper(II) Enzyme-like Catalysts, Prepared by Molecular Imprinting Technique in Oxidation of Phenols, Macromolecular Symposia, Volume 235, Issue 1, Pages: 127-135, Date: March 2006.
    27. Edward A. Karakhanov, Lyusyen M. Karapetyan, Yulia S. Kardasheva, Anton L. Maksimov, Elena A. Runova, Vitaliy A. Skorkin, Maria V. Terenina, Molecular Recognition and Catalysis: from Macrocyclic Receptors to Molecularly Imprinted Metal Complexes, Macromolecular Symposia, Volume 235, Issue 1, Pages: 39-51, Date: March 2006.
    28. Haruyuki Hiratani, Yuri Mizutani, Carmen Alvarez-Lorenzo, Controlling Drug Release from Imprinted Hydrogels by Modifying the Characteristics of the Imprinted Cavities, Macromolecular Bioscience, Volume 5, Issue 8, Pages: 728-733, Date: August 12, 2005.
    29. Robert Langer, Nicholas A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology , AIChE Journal, Volume 49, Issue 12, Pages: 2990-3006, Date: December 2003.
    30. http://www.nsfc.gov.cn/nsfc/cen/nami/htm/59932040.h
    31. Siemann, M., Andersson, LI. and Mosbach, K. Selective recognition of the herbizide atrazine by non-covalent molecularly imprinted polymers. J. Agric. Fd. Chem. 44, 141-145 ,1996.
    32. Kobayashi, T., Murawaki, Y., Reddy, P. S., Abe, M. and Fujii, N., Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal. Chim. Acta. 435(1), 141-149 ,2001.
    33. Whitcombe, MJ., Alexander, C. and Vulfson, EN.,Smart polymers for the food industry., Trends Fd. Sci. Technol., 8 (5), 140-145 ,1997.
    34. Zhur. Fiz. Khim., Adsorption properties and structure of silica gel., Polyakov MV, 2:799-805, 1931.
    35. J. Mol. Recognit., Moleular imprinting science and technology:a survey of the literature for the years up to and including 2003, Published online 4 January 2006 in Wiley InterScience, 19: 106–180, 2006.
    36. B. Sellergren, Molecularly Imprinted Polymers, Elsevier Science, Amsterdam, Netherlands., 2001 .
    37. http://www.smi.tu-berlin.de/story/MIT.htm
    38. 杜逸虹, 聚合體學, 科學技術叢書, 中華民國八十七年九月.
    39. Peter A. G. Cormack, Amaia Zurutza Elorza, Molecularly imprinted polymers:synthesis and characterization, Journal of Chromatography B, 804, 173-182 , 2004 .
    40. Ramstrom, O., Skudar, K., Haines, J., Patel, P. and Bruggemann, O., Food analyses using molecularly imprinted polymers., J. Agric. Food Chem. 49 (5), 2105-2114 ,2001.
    41. Haginaka, J., Takehira, H., Hosoya, K., and Tanaka, N., Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen - comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques., J. Chromatogr., A 816 (2), 113-121 ,1998.
    42. Lai, J.P., Cao, X. F., He, X. W. and Li, Y. Y. Study on recognition mechanism of molecularly imprinted microsphere synthesized from aqueous solution. Acta Chim. Sin. 60 (2), 322-327 ,2002.
    43. Lai, J. P., Lu, X. Y., Lu, C. Y., Ju, H. F. and He, X. W., Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase., Anal. Chim. Acta 442 (1), 105-111, 2001.
    44. Mayes, AG. and Mosbach, K., Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase., Anal. Chem., 68 (21), 3769-3774 , 1996.
    45. Haupt, K. and Mosbach, K., Molecularly imprinted polymers and their use in biomimetic sensors., Chem. Rev., 100 (7), 2495-2504 (2000).
    46. Haginaka, J. and Kagawa, C. ,Uniformly sized molecularly imprinted polymer for d- chlorpheniramine - Evaluation of retention and molecular recognition properties in an aqueous mobile phase., J. Chromatogr., A 948 (1-2), 77-84 (2002).
    47. Haginaka, J. and Kagawa, C. ,Uniformly sized molecularly imprinted polymer for d- chlorpheniramine - Evaluation of retention and molecular recognition properties in an aqueous mobile phase., J. Chromatogr. ,A 948 (1-2), 77-84 (2002).
    48. Haginaka, J., Sanbe, H. and Takehira, H., Uniform-sized molecularly imprinted polymer for (S)-Ibuprofen - retention properties in aqueous mobile phases., J. Chromatogr. A, 857 (1-2), 117-125 (1999).
    49. Haginaka, J. and Sanbe, H., Uniformly sized molecularly imprinted polymer for (S)-naproxen: Retention and molecular recognition properties in aqueous mobile phase., J. Chromatogr. A , 913(1-2), 141-146 (2001).
    50. Li W. H., Stover H. D. H., Synthesis of Monodisperse Poly( divinylbenzene ) Microspheres., J. Polym. Sci. Part A: Polym. Chem., 31, 3257, 1993 .
    51. Haginaka, J. and Kagawa, C. Uniformly sized molecularly imprinted polymer for d- chlorpheniramine - Evaluation of retention and molecular recognition properties in an aqueous mobile phase. J. Chromatogr. A 948 (1-2), 77-84 ,2002.
    52. N.Pérez-Moral, A G. Mayes.,Comparative study of imprinted polymer particles prepared., Analytica Chimica Acta ., 50415-21. , 2004 .
    53. Kempe, M., and Mosbach, K., Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase., J. Chromatogr.,664, 276-279 ,1994.
    54. Ramstrvm, O., Nicholls, IA. and Mosbach, K., Synthetic peptide receptor mimics: highly stereoselective recognition in non-covalent molecularly imprinted polymers., Tetrahedron Asymmetry .,5 (4), 649-656 ,1994.
    55. Shi, H. Q. and Ratner, B.D., Template recognition of protein-imprinted polymer surfaces., J. Biomed. Mater. Res., 49 (1), 1-11, 2000.
    56. Siemann, M., Andersson L.I. and Mosbach, K., Selective recognition of the herbizide atrazine by non-covalent molecularly imprinted polymers., J. Agric. Fd. Chem., 44, 141-145 ,1996.
    57. Haupt, K. and Mosbach, K., Some new developments and challenges in non-covalent molecular imprinting technology., J. Mol. Recogn., 11, 62-68 , 1998.
    58. Kempe, M., and Mosbach, K., Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase., J. Chromatogr., 664, 276-279 ,1994.
    59. Andersson L., Preparation of amino acid ester-selective cavities formed by non-covalent imprinting with a substrate in highly cross-linked polymers, React. Polym , 9, 29-41 , 1988 .
    60. Andersson , L. B., Ekberg, B., and Mosbach, K., Synthesis of a new amino acid based cross-linker for preparation of substrate selective acrylic polymers, Tetrahed. Lett., 26, 3623-3624 , 1985.
    61. Andersson, L. B., Sellergren, B., and Mosbach, K., Imprinting of amino acid derivatives in macroporous polymers, Tetrahed. Lett., 25, 5211-5214 , 1984.
    62. Wulff, G. and Vesper, W. , Preparation of chromatographic sorbents with chiral cavities racemic resolution., J. Chromatogr. 167, 171-186, 1978.
    63. Klein J. U., Whitombe M. J., Mulholland F., Vulfson E. N., Template-mediated synthesis of a polymeric receptor receptor specific to amino acid sequescesn , Angew . Chem., Int. Ed. Engl., 38,2057, 1999 .
    64. Haupt K., Mosbach K., Molecularly imprinted polymers and their use in biomimetic sensors, Chem.Rev., 100, 2495 ( 2000 ).
    65. 葉威明,以分子模板修飾電極感測嗎啡,台灣大學化學工程碩士論文,中華民國九十四年六月
    66. Hosoya, K., Yoshizako, K., Shirasu, Y., Kimata, K., Araki, T., Tanaka, N., and Haginaka, J., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition., Journal of Chromatography A., 728, 139-147 , 1996.
    67. Komiyama M., Takeuchi T., Mukawa T., H. Asauma, Molecular Imprinting From fundamentals to Applications., Wiley ., 2002 .
    68. Makoto K., Toshiumi T., Takashi M., Hiroyuki A., Molecular Imprinting from Fundamentals to Applications., WELEY-VCH., Weinheim, Germany. , 2003 .
    69. Mosbach, K., Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics)., Anal. Chim. Acta. ,435(1), 3-8 ,2001.
    70. Zhang, T. L., Liu, F., Chen, W., Wang, J. and Li, K. Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers., Anal. Chim. Acta .,450, 53-61 ,2001.
    71. Svenson, J. and Nicholls, I. A., On the thermal and chemical stability of molecularly imprinted polymers., Anal. Chim. Acta, 435(1), 19-24 ,2001.
    72. Johan Svenson, Ian A. Nicholls, On the thermal and stability of molecularly imprinted polymers., Analytica Chimica Acta .,435 ( 2001 ) 19-24.
    73. Dickert, F. L. and Hayden, O. , Molecular Imprinting in Chemical Sensing., Trends Anal. Chem., 18 (3), 192-199, 1999.
    74. Piletsky, S. A., Piletskaya, K., Piletskaya, E. V.,Yano, K., Kugimiya, A., Elgersma, A. V., Levi, R., Kahlow, U., Takeuchi, T., Karube, I., Panasyuk, T. I. and Elskaya, A. V. ,A biomimetic receptor system for sialic acid based on molecular imprinting., Anal. Lett. 29 (2), 157-170 , 1996.
    75. Piletsky Sergey A. and Anthony P. F. Turner., Electrochemical Sensors Based on Molecularly Imprinted Polymers., 2001.
    76. Piletsky, S. A., Piletskaya, E. V., Levi, R. and Karube, I. Optical system for triazine based on molecularly imprinted polymer ., Anal.Lett. 30(3), 445-455 ,1997.
    77. Piletsky, S. A., Piletskaya, K., Piletskaya, E. V.,Yano, K., Kugimiya, A., Elgersma, A. V., Levi, R., Kahlow, U., Takeuchi, T., Karube, I., Panasyuk, T. I. and Elskaya, A. V. , A biomimetic receptor system for sialic acid based on molecular imprinting., Anal. Lett. 29 (2), 157-170 , 1996.
    78. Scheller, F. W., Wollenberger, U. and Warsinke, A., Research and development in biosensors., Curr. Opin. Biotechnol., 12 (1), 35-40 , 2001.
    79. Masque, N., Marce , R. M., and Borrull, F., Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction., TRAC-Trends Anal. Chem. 20 (9), 477-486 ,2001.
    80. Sabik, H., Jeannot , R. and Rondeau, B., Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters., J. Chromatogr. A ,885 (1-2), 217-236,2000.
    81. Hennion, M. C. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography., J. Chromatogr. A ,856 (1-2), 3-54 , 1999.
    82. Ensing, K., and de Boer, T.,Tailor-Made Materials for Tailor-Made Applications: Application of Molecular Imprints in Chemical Analysis., Trends Anal. Chem. 18 (3), 138-145, 1999.
    83. Brüggemann, O., Haupt, K., Ye, L., Yilmaz, E. and Mosbach, K., New configurations and applications of molecularly imprinted polymers., J. Chromatogr. A ,889(1-2), 15-24, 2000.
    84. Allender, C. J., Richardson, C., Woodhouse, B., Heard,C.M. and Brain,K. R., Pharmaceutical application for molecularly imprinted polymers., Intl. J . Pharmaceutics.,195(1-2), 39-43 , 2000.
    85. Zhou, Jie. and He, Xiwen., Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine., Anal. Chim. Acta. 381, 85-91 (1999)
    86. Terrett, N., Molecularly imprinted polymers., Drug Discovery Today .,3 (6), 297, 1998.
    87. Zhang, T. L., Liu, F., Wang, J. and Li, K. A., Study on the molecular recognition properties of 4-hydroxybenzoic acid-imprinted polymer and salicylic acid-imprinted polymer., Acta Chimica Sinica., 59(10), 1623-1627, 2001.
    88. Dauwe, C. and Sellergen, B., Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers., J. Chromatogr., 753 (2), 191-200 , 1996.
    89. Shea, K.J., and Dougherty, T. K. , The influence of functional group positioning on the effectiveness of molecular recognition., J. Am. Chem. Soc., 108, 1091-1093 ,1986.
    90. Sellergren, B., and Shea, KJ., Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers., J. Chromatogr. (635), 31-49 ,1993.
    91. Toshimi Mizoguchi,Toshiyuki Edano, and Tomoyuki Koshi.,A method of direct measurement for the enzymatic determination of cholesteryl esters., Tokyo 189-0022, Japan.
    92. Huval, C. C., Bailey, M. J., Braunlin, W. H., Holmes-Farley, S. R., Mandeville, W. H., Petersen, J. S., Polomoscanik, S. C. , Sacchiro, R. J., Chen , X. and Dhal, P. K., Novel cholesterol lowering polymeric drugs obtained by molecular imprinting., Macromolecules 34 (6), 1548-1550,2001.
    93. Kugimiya, A., Kuwada, Y. and Takeuchi, T., Preparation of sterol-imprinted polymers with the use of 2-(methacryloyloxy)ethyl phosphate., J. Chromatogr. A .,938 (1-2), 131-135,2001.
    94. Baggiani, C., Giraudi, G., Trotta, F., Giovannoli, C. and Vanni, A., Chromatographic characterization of a molecular imprinted polymer binding cortisol., Talanta , 51 (1), 71-75,2000.
    95. Cheong, S. H., Rachkov, A. E., Park, J. K., Yano, K. and Karub, I., Synthesis and Binding Properties of a Noncovalent Molecularly Imprinted testosterone-specific Polymer., J. Polym. Sci. A.,36(11) , 1725-1732 ,1998.
    96. Kugimiya, A., Matsui, J., Abe, H., Aburatani, M. and Takeuchi, T. , Synthesis of Castasterone Selective Polymers Prepared by Molecular Imprinting., Anal. Chim. Acta.,,365, 75-79 ,1998.
    97. Lubke, M.; Whitcombe, M. J.; and Vulfson, E. N., J. Am. Chem. Soc., 120, 13342-13348.,1998.
    98. Sweden, T. A., Thermometric 2250-series.
    100.Lin, F. Y., Chen, W. Y., and Sang, L. C., Microcalorimetric studies of the interactions of lysozyme with immobilized metal ions : effects of ion, pH value, and salt concentration, Journal of Colloid and Interface Science, 214, 373-379,1999.
    101.Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter, Analytical Biochemistry, 179, 131-137.,1989.

    無法下載圖示 校內:3005-06-05公開
    校外:3005-06-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE